النهايات و الاتصال

I- النهاية المنتهية 1- <u>النهاية ا عند x</u>_0 أ- النهاية 0 عند 0 تمرين $g(x) = \frac{x^3}{|x|}$ نعتبر الدالتين f و g حيث $f(x) = x^2$ و $f(x) = x^2$ نعتبر الدالتين f أ) مثل مبيانيا f $orall arepsilon \succ 0$ $\exists lpha \succ 0 / f(]-lpha; lpha[-\{0\}) \subset]-arepsilon; arepsilon[$ ب) بين مبيانيا أن ج) بين ذلك جبريا g مثل مىيانيا -2 $\forall \varepsilon \succ 0 \quad \exists lpha \succ 0 / \quad g(]-lpha; lpha[-\{0\}) \subset]-arepsilon; arepsilon]$ ب) بين مبيانيا أن ج) بين ذلك جبريا 3- أتمم الجدول <u>التالي</u> f(x)g(x)x -10^{-2} -10^{-5} -10^{-100} 0 10^{-100} 10^{-5}

 10^{-2}

ملاحظة:

نلاحظ كلما اقترب x من 0 يقترب f(x) من 0، بل أكثر كلما كانxيؤول إلى 0 فان f(x)يؤول إلى 0 نقول إن نهاية f هي 0 عندما يؤول x إلى 0

$$\begin{split} \lim_{x \to 0} f(x) = 0 & \text{identify} \\ \text{identify} & g & \text{identify} \\ \text{identify} & \text{identify} & g & \text{identify} \\ \text{identify} & f & \text{absolution} \\ \text{identify} & f(x) = 0 \\ \text{identify} & f(x) = 0 \\ \text{identify} & f(x) = 0 \\ \text{identify} \\ \text{identify} \\ \text{identify} & f(x) = 0 \\ \text{identify} \\ \text{iden$$

 $\lim_{x \to 0} g(x) = 0$ انت f(x) = 0 و f(x) = 0 و f(x) = 0 و f(x) = 0 فان f(x) = 0*

$$\begin{aligned} \frac{\forall a \in \mathbb{R} \quad \forall n \in \mathbb{N}^* \quad \lim_{x \to 0} ax^n = 0 \quad \lim_{x \to 0} a\sqrt{x} = 0}{\|z \|_{x \to 0}} \\ \forall a \in \mathbb{R} \quad \forall n \in \mathbb{N}^* \quad \lim_{x \to 0} ax^n = 0 \quad \lim_{x \to 0} a\sqrt{x} = 0 \\ \forall a \in \mathbb{R} \quad \forall n \in \mathbb{N}^* \quad \lim_{x \to 0} a\sqrt{x} = 0 \\ \|z \|_{x \to 0} = 0 \quad |z \|_{x \to 0} = 0 \\ \|z \|_{x \to 0} = 0 \quad |z \|_{x \to 0} = 0 \\ \|z \|_{x \to 0} = 0 \quad |z \|_{x \to 0} = 0 \\ \|z \|_{x \to 0} = 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ |z \|_{x \to 0} = 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x \in 0 \quad |z \|_{x \to 0} = 0 \\ \forall x = 0 \quad |z \|_{x \to$$

$$\begin{split} \begin{split} & \left| P(x) - P(x_0) \right| \leq k |x - x_0| = 0 \\ & \lim_{x \to x_0} P(x) = P(x_0) \quad \text{id} \quad \inf_{x \to x_0} k |x - x_0| = 0 \\ & \text{e} \quad \text{cxi} \quad \text{for a rable is } \\ & \text{for a rable is } \\ & \text{so a rable is }$$

تمرين

أعط تمديدا بالاتصال لدالة
$$f$$
 في $_0 x$ في الحالتين

$$\begin{cases} f(x) = x \sin \frac{1}{x^2} \\ x_0 = 0 \end{cases} \begin{cases} f(x) = \frac{3x^2 + 2x - 8}{x + 2} \\ x_0 = -2 \end{cases}$$

$$g(x) = 0 \end{cases} \begin{cases} f(x) = \frac{|x-1|(x+2)}{x-1} \\ x = \frac{|x-1|(x+2)}{x-1} \end{cases}$$

$$f(x) = \frac{|x-1|(x+2)}{x-1} \end{cases}$$

$$f(x) = \frac{|x-1|(x+2)}{x-1}$$

$$g(x) = x + 2$$

$$g(x)$$

خاصبة

 $\lim_{x \to x_0} u(x) = 0 \quad \text{opt} x \in I \quad \left| f(x) - l \right| \le u(x) \quad \text{vert} \quad x_0 \quad \text{opt} x_0 \quad \text{opt} x \in I \quad \left| f(x) - l \right| \le u(x)$ فان $\lim_{x \to x_0} f(x) = l$

 $f(x_0) + \varepsilon$

 $f(x_0) - \varepsilon$

 $f(x_0)$

تمرين

 $\lim_{x \to 0} 2 + x^2 \cos \frac{1}{x} = 2$ بين أن $2 = \frac{1}{x}$ **خاصية** إذا كان I = |f(x)| = |l| فان $\lim_{x \to x_0} f(x) = l$ فان $|l| = |f(x)| = \frac{1}{2}$

أ- تعريف لتكن f دالة معرفة على مجال مفتوح مركزه x_0 تكون f متصلة في x_0 إذا وفقط إذا كان $\lim_{x \to x_0} f(x) = f(x_0)$

أمثلة

 $\left(n \in \mathbb{N}^* \quad a \in \mathbb{R}\right)$ الدوال $x \to ax^n$ متصلة في 0 $\left(n \in \mathbb{N}^* \quad a \in \mathbb{R}\right)$ الدوال الثابتة متصلة في كل نقطة من مجموعة تعريفها الدالة $x \to \sqrt{|x|}$ متصلة في 0

اصطلاح

إذا كانت f دالة معرفة على مجال مفتوح مركزه x_0 و كانت غير متصلة في x_0 فإننا نقول إن f متقطعة x_0 في x_0

 $x_0 + \alpha$

 $\frac{x_1}{x_0} - \alpha x_0$

 $\begin{cases} f(x) = \frac{x^2 - 1}{x - 1} & x \neq 1 \\ f(1) = 2 \end{cases}$

تمرين

نعتبر f دالة معرفة على $\mathbb R$ بـ

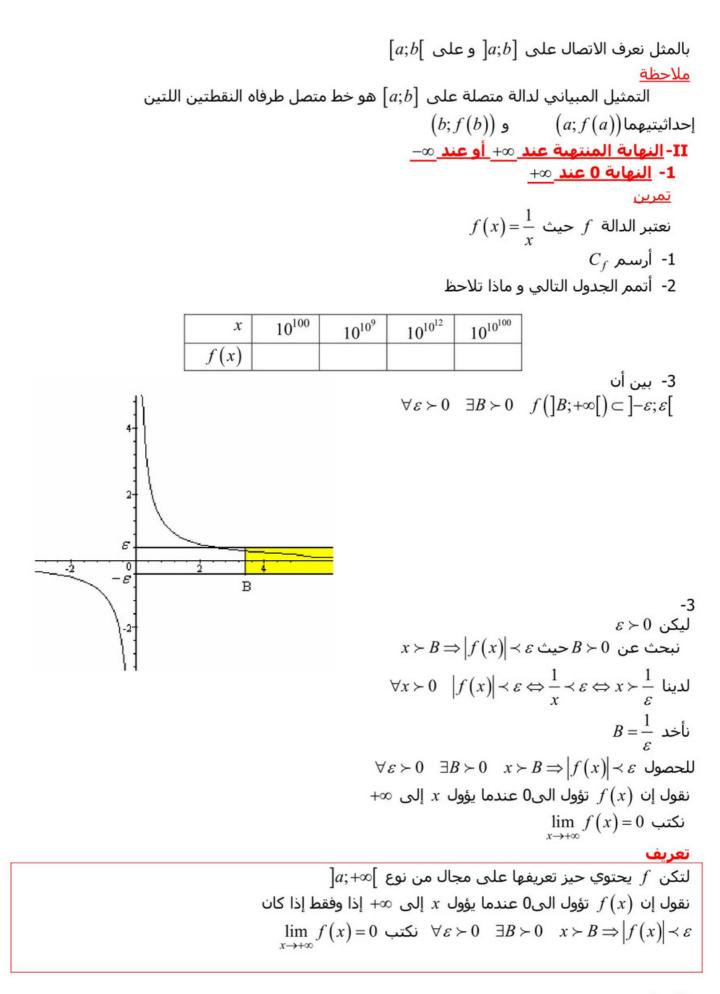
أدرس اتصال f في1

ب- خاصية

 $\mathbb R$ كل دالة حدودية متصلة في كل نقطة من

$$\begin{split} \| \mathbf{h}(\mathbf{x}) \|_{\mathbf{x}} & \| \mathbf{x} \|_{\mathbf{x}} \| \mathbf{x} \| \| \mathbf$$

$$\begin{split} & \lim_{x \to 1} f(x) = -3 \lim_{x \to 1} \| e^{-1} \int_{x \to 1}^{x \to 1} \| e^{-1} \| e$$



خاصيات

خاصية1

$$\forall (k;n) \in \mathbb{R} \times \mathbb{N}^*$$
 $\lim_{x \to +\infty} \frac{k}{x^n} = 0$; $\lim_{x \to +\infty} \frac{k}{\sqrt{x}} = 0$

خاصية2

إذا وجد مجال على شكل
$$a;+\infty$$
 [بحيث $a;+\infty$ [إذا وجد مجال على $f(x) = 0$ وكان $\lim_{x \to +\infty} u(x) = 0$ وكان $\forall x \in]a;+\infty$ فان $f(x) \leq u(x)$

تمرين تطبيقي
أحسب
$$\frac{7}{4x^2+3}$$

 $\lim_{x \to +\infty} \frac{7}{4x^2+3} = 0$ أحسب $\frac{7}{14x^2+3}$ وحيث $0 = \frac{7}{x^2}$ فان $0 = \frac{7}{4x^2+3}$ فان $1 = x + x^2$
 $x + x^2 + 3 + x^2$ وحيث $\frac{7}{4x^2+3}$ وحيث $1 = \frac{7}{x^2}$ فان $1 = x + x^2 + 3 + x^2$
 $\frac{1}{2}$ **Lingure** 1 **Divential of a states** $\frac{1}{2}$ ($\frac{1}{2}$) $\frac{1}{2}$ ($\frac{1}{2}$) (

<u>مثال</u>

$$\lim_{x \to +\infty} \frac{x^2 - 2}{x^2 + 1} = 1$$
 بين أن
-∞ عند النهاية ا

لتكن
$$f$$
 يحتوي حيز تعريفها على مجال من نوع $[a]_{\infty,a}$
نقول إن $f(x)$ تؤول إلى l عندما يؤول x إلى ∞ إذا وفقط إذا كان $f(x)$ تؤول إلى $f(x)$ عندما يؤول x إلى ∞ إذا وفقط إذا كان $f(x) = l$
نكتب $\lim_{x \to -\infty} f(x) = l$

ملاحظات
- إذا كانت
$$f(x) = \lim_{x \to +\infty} f(x)$$
 فان $f(x) = \lim_{x \to +\infty} f(x)$
- إذا كانت f فردية فان $f(x) = -\lim_{x \to +\infty} f(x) = \int_{\infty \to \infty} \frac{f(x)}{x \to \infty}$
- إذا كانت ألمنتهية والترتيب
خاصيات

خاصية1

 x_0 لتكن f دالة معرفة على مجال مفتوح منقط I مركزه f $l \ge 0$ إذا كان $I \ge lim_{x \to x_0} f(x) = l$ و f موجبة على I فان $0 \le l$

خاصية2

لتكن f دالة معرفة على مجال مفتوح منقط مركزه x_0 إذا كان l = l $\lim_{x \to x_0} f(x) > l imes 0$ فانه يوجد مجال مفتوح منقط Jمركزه x_0 بحيث $0 \prec l \times (x) = J$ $\forall x \in J$ $f(x) \to l imes d$ خاصية3

 x_0 و g دا لتان معرفتان على مجال مفتوح منقط I مركزه f

$$l \ge l$$
إذا كان $l = f = g$ و كان $\lim_{x \to x_0} g(x) = l$ و كان $\lim_{x \to x_0} f(x) = l$ على I فان $l \ge l$

خاصية4

 x_0 و g و h دوال معرفة على مجال مفتوح منقط I مركزه x_0 $\lim_{x \to x_0} h(x) = l$ وكان $f \ge h \ge g$ وكان $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = l$ على I فان $f(x) = \lim_{x \to x_0} g(x) = l$

<u>IV- العمليات على النهايات المنتهية</u>

و g و x_0 و x_0 عدد حقيقي f و f و f عدد حقيقي f و f و x_0 و x_0 و f + g و f + g و f + g لها نهاية منتهية في x_0

$$\begin{split} \lim_{x \to x_0} (f \cdot g)(x) &= \lim_{x \to x_0} f(x) \times \lim_{x \to x_0} g(x) & \lim_{x \to x_0} (f + g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) \\ \lim_{x \to x_0} \left| f(x) \right| &= \left| \lim_{x \to x_0} f(x) \right| & \lim_{x \to x_0} (\lambda \cdot f)(x) = \lambda \lim_{x \to x_0} f(x) \\ \lim_{x \to x_0} \sqrt{f(x)} &= \sqrt{\lim_{x \to x_0} f(x)} & \text{im} \int_{x \to x_0} f(x) \\ & \lim_{x \to x_0} \left(\frac{f}{g} \right)(x) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} & \text{im} \int_{x \to x_0} g(x) \neq 0 \\ & \text{im} \int_{x \to x_0} g(x) \neq 0 \end{split}$$

ملاحظة الخاصيات تبقى صالحة في ∞+ = $x_0 = \infty$ و ∞ $x_0 = -\infty$ م <u>۷- العمليات على الدوال المتصلة</u> خاصيات

*- مجموع دالتين متصلتين في
$$x_0$$
 هي دالة متصلة في x_0
*- جداء دالتين متصلتين في x_0 هي دالة متصلة في x_0
*- جداء دالة متصلة في x_0 في عدد حقيقي هي دالة متصلة في x_0
*- اذا كانتا f و $\frac{f}{g}$ متصلتان في x_0
*- اذا كانتا f موجبة على مجال مفتوح مركزه x_0 ومتصلة في x_0 فان الدالتين $\frac{f}{g}$ و $\frac{f}{g}$ متصلتان في x_0
*- اذا كانت f موجبة على مجال مفتوح مركزه x_0 ومتصلة في x_0 فان دالة $\frac{f}{g}$ متصلة في x_0
*- اذا كانت f موجبة على مجال مفتوح مركزه x_0 ومتصلة في x_0 فان دالة x_0 متصلة في x_0
*- اذا كانت f متصلة وكانت $f(ax+b)$

نتيجة كل دالة جدرية متصلة على مجموعة تعريفها

<u>تذكير</u> الدالة الجدرية هي خارج دالتين حدوديتين <u>تمارين</u>

$$\begin{split} \lim_{x \to 2} \frac{x - \sqrt{3x - 2}}{x - 2} \quad ; \quad \lim_{x \to 1} \sqrt{x^2 + 5x - 2} & \lim_{x \to 1} \frac{3x^2 - 5x + 2}{x^2 - 1} \quad ; \quad \lim_{x \to 3} \frac{x^2 - x}{x^2 + x - 6} \quad solwhere - 1 \\ \text{Interpretention of the set of t$$

 \mathbb{R} الدالتان $x \to \cos(ax+b)$ و $x \to \sin(ax+b)$ متصلتان في الدالة $x \to \tan(ax+b)$ متصلة في حيز تعريفها

2- <u>نهایات اعتیادیة هامة</u> sin r

$$\begin{split} \lim_{x \to 0} \frac{\sin x}{x} & \text{identify} \\ x \neq 0 & \text{identify} \\ \text{Levend } x \\ \text{Le$$

$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \lim_{x\to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \lim_{x\to 0} \frac{1}{x} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2 = \frac{1}{2}$$

$$\lim_{x\to 0} \frac{\tan x}{x} = \lim_{x\to 0} \frac{\sin x}{x} \times \frac{1}{\cos x} = 1 *$$

$$\lim_{x\to 0} \frac{\sin x}{x} = \frac{1}{2} \quad g \quad \lim_{x\to 0} \frac{\tan x}{x} = 1 \quad g \quad \lim_{x\to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0} \frac{\sin x}{x^2} = \frac{1}{2} \quad g \quad \lim_{x\to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0} \frac{\sin x}{x^2} = 1 \quad g \quad \lim_{x\to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0} \frac{\sin x}{x^2} = 1 \quad g \quad \lim_{x\to 0} \frac{\sin x}{x^2} = 1$$

$$\lim_{x\to 0} \frac{\sin x}{x^2} = 1 \quad g \quad \lim_{x\to 0} \frac{\sin x}{x^2} = 1$$

$$\lim_{x\to 0} \frac{\sin x}{x^2} = 1 \quad g \quad \lim_{x\to 0} \frac{\sin x}{x^2} = 1$$

$$\lim_{x\to 0} \frac{\sin x}{x^2} \quad \lim_{x\to 0} \frac{\sin x}{x^2} \quad \lim_{x\to 0} \frac{\sin 3x}{x^2} \quad \lim_{x\to 0} \frac{\sin 3x}{x^2} \quad \lim_{x\to 0} \frac{\cos 2x}{x^2} \quad \lim_{x\to 0} \frac{\sin 3x}{x^2} \quad \lim_{$$

Dreamjob.ma

* لتكن f دالة معرفة على مجال من نوع $]a;+\infty[$. $\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow (\forall A \succ 0) \quad (\exists B \succ 0) \quad \forall x \in D_f \quad x \succ B \Rightarrow f(x) \succ A$

خاصية

$$\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \lim_{x \to +\infty} -f(x) = +\infty$$

خاصية

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(-x)$$

النهايات والترتيب

$$\lim_{x \to x_0} f(x) = +\infty \quad \text{idv} \quad u(x) = +\infty \quad \text{idv} \quad x \to x_0 \quad$$

ملاحظة الخاصيات السابقة تبقى صالحة عند $\infty +$ أو عند $\infty -$ أو عند x_0 على اليمين أو عند x_0 على $(\alpha \succ 0) = x_0 - \alpha; x_0 = x_0; x_0 + \alpha = 1$ اليسار مع تعويض I على التوالي بالمجالات $[a;+\infty[$ و $]a;+\infty[$ و $]a;+\infty[$ و $]x_0;x_0+\alpha[$ و $]x_0;x_0+\alpha[$ و $]a;+\infty[$ **VIII** اليسار <u>مع تعوي</u>ض J على النهايات اللامنتهية

 $\cdot g$ تعتبر دالتين f و

عند x_0 أو عند x_0 على اليمين أو عند x_0 على اليسار أو عند $\infty+$ أو عند $\infty-$ تكون لدينا النتائج التالية:

ا- نهاية محموع

f + g نهایة	g نهایة	نهاية <i>f</i>
+∞	+∞	$l \neq 0$ l
-∞	-∞	$l \neq 0$ l
+∞	$+\infty$	+∞
-∞	$-\infty$	
شـکل غیر محدد	$-\infty$	+∞

<u>ں- نهایة جداء</u>

f imes g نهاية	g نهاية	نهاية f
∞مع وضع إشارة /	$+\infty$	$l \neq 0$ l
l مع وضع عكس إشارة ∞	-∞	$l \neq 0$ l
شـکل غیر م <i>حد</i> د	+∞	0
شکل غیر محدد	-∞	0
+∞	$+\infty$	+∞
+∞	-∞	-∞
-∞	∞	+∞

ملاحظة:

لحساب نهاية λf حيث $\lambda \in \mathbb{R}$ يمكن اعتبار λf كجداء الدالة f الثابتة $\lambda \to \lambda$ التي نهايتها هي λ و الدالة f

<u>ج- نهاية خارج</u>

$rac{f}{g}$ نهاية	نهاية g	نهاية <i>f</i>
0	+∞	l
0	-∞	l
∞مع وضع إشارة /	0+	ا حيث 0 ≠ ا
l مع وضع عكس إشارة ∞	0-	<i>l</i> حيث 0 ≠ <i>l</i>
شکل غیر محدد	0	0
شکل غیر محدد	+∞	+∞
شکل غیر محدد		-∞
شـکل غیر محدد	-∞	+∞
l مع وضع إشارة l	<i>l</i> حيث 0 ≠ <i>l</i>	+∞
l مع وضع عكس إشارة ∞	$l \neq 0$ حيث l	-∞

 \sqrt{f} د- نهایة

نهایة <i>f</i>	\sqrt{f} نهایة
+∞	+∞

IX- تطبيقات 1- دالة القوة الصجيحة

$$\lim_{x \to +\infty} x^n = +\infty \qquad n \in \mathbb{N}^*$$
ليكن $n \in \mathbb{N}^*$ ليكن $n \in \mathbb{N}^*$ - إذا كان n زوجي فان $\infty + n = -\infty$

نتيجة

$$\lim_{x \to \pm \infty} \frac{1}{x^n} = 0 \qquad n \in \mathbb{N}^*$$
 ليکن

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$f(x) = a_n x^n \left(1 + \frac{a_{n-1}}{a_n x} + \dots + \frac{a_1}{a_n x^{n-1}} + \frac{a_0}{a_n x^n} \right)$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} a_n x^n \quad \text{even} \quad \lim_{x \to +\infty} \left[1 + \frac{a_{n-1}}{a_n x} + \dots + \frac{a_1}{a_n x^{n-1}} + \frac{a_0}{a_n x^n} \right] = 1$$

نهاية دالة حدودية عند ما يؤول x إلى $\infty+$ أو $\infty-$ هي نهاية $\,$ حدها الأعلى درجة

Dreamjob.ma

01 1

أمثلة

$$\lim_{x \to +\infty} -4x^5 + 3x^2 - 5x + 1 = \lim_{x \to +\infty} -4x^5 = -\infty$$
$$\lim_{x \to -\infty} -3x^7 + 7x^3 - x + 31 = \lim_{x \to -\infty} -3x^7 = +\infty$$

3- الدالة الجدرية

نهاية دالة جدرية عند ما يؤول x الى $\infty+$ أو $\infty-$ هي نهاية خارج $\,$ حديها الأكبر درجة

$$\lim_{x \to +\infty} \frac{-4x^5 + 3x^2 - 5x + 1}{3x^2 - x + 1} = \lim_{x \to +\infty} \frac{-4x^5}{3x^2} = \lim_{x \to +\infty} \frac{-4}{3}x^3 = -\infty$$
$$\lim_{x \to -\infty} \frac{-3x^7 + 7x^3 - x + 31}{x^9 + 3x^2 - 4} = \lim_{x \to -\infty} \frac{-3x^7}{x^9} = \lim_{x \to -\infty} \frac{-3}{x^2} = 0$$
$$\lim_{x \to +\infty} \frac{7x^5 + 3x^2 - 5x + 1}{3x^5 - x^4 + 1} = \lim_{x \to +\infty} \frac{7x^5}{3x^5} = \frac{7}{3}$$

<mark>تمارين</mark> حدد النهايات

$$\begin{split} &\lim_{x \to 1} \frac{x^2 + x - 2}{2x^2 + x - 3} \quad ; \quad \lim_{x \to -1} \frac{x + 1}{x^2 - 2x - 3} \\ &\lim_{x \to -1} \frac{\sqrt{x + 5} - 2}{x + 1} \qquad \lim_{x \to 2} \frac{x^2 - x - 6}{x - 2} \\ &\lim_{x \to 1} \frac{3x - 2}{x^2 - 3x + 2} \qquad \lim_{x \to 0^+} \left(\frac{1}{x^2} - \frac{1}{x^3}\right) \\ &\lim_{x \to +\infty} \sqrt{x^2 - 2} - x \qquad \lim_{x \to +\infty} \frac{\sqrt{x^2 + 2} + 3x}{2x - 1} \\ &\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{x^2 - x} \qquad ; \quad \lim_{x \to 1^+} \frac{2x^2 - 2}{\sqrt{x - 1}} \\ &\lim_{x \to +\infty} \frac{\sqrt{x + 3} - 4}{x} \qquad ; \quad \lim_{x \to +\infty} \frac{-2x}{\sqrt{x + 1} - 4} \end{split}$$

Dreamjob.ma

Moustaouli Mohamed