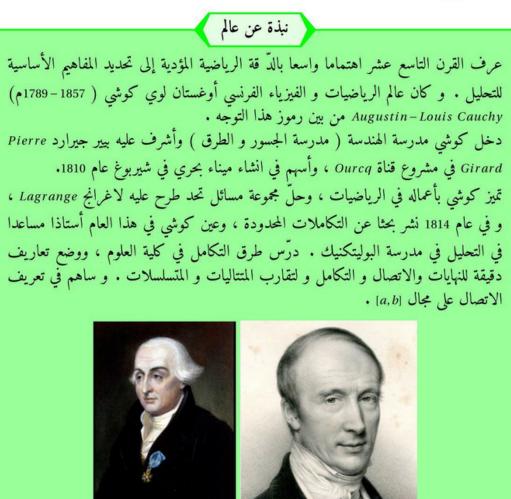
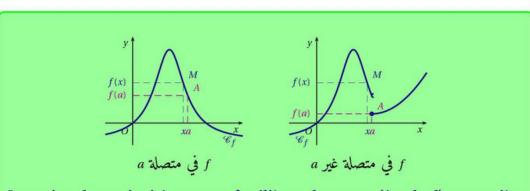
LIMITES ET CONTINUITE





جوزيف لوى لاغرانج

أوغستان لوى كوشى

La notion de continuité nous est familière : le temps s'écoule d'une manière continue, on ne passe pas brutalement de 12h à 12h01s, il n'y pas de saut. C'est en ce sens que l'expression fonction continue est employée en mathématiques.

بطاقة تقنية رقم : 02	
المستوى : الثانية باكلوريا علوم تجريبية درس : النهايات و الاتصال التذبير الزمني : 15 ساعة	ثانوية : الفتح التأهيلية السنة الدراسية : 2016–2015 الأستاذ : عادل بناجي
 4 الاتصال في نقطة - الاتصال على 1 مبرهنة القيم الوسطية 2 بحال 5 العمليات على الدوال المتصلة 2 الدالة العكسية لدالة متصلة 6 صورة مجال بدالة متصلة 	فقرات الدرس
 عموميات حول الدوال العددية مفاهيم أساسية في درس دراسة الدوال العددية دراسة الدوال العددية 	المكتسبات القبلية
 تحديد صورة قطعة أو مجال بدالة متصلة و بدالة متصلة و رتيبة قطعا ؛ تطبيق مبرهنة القيم الوسيطية في دراسة بعض المعادلات و المتراجحات أو دراسة إشارة بعض التعابير؛ استعمال طريقة التفرع الثنائي (ladichotomie) في تحديد قيم مقربة لحلول المعادلة أو لتأطير هذه الحلول ؛ تطبيق مبرهنة القيم الوسيطية و مبرهنة الدالة التقابلية في حالة دالة متصلة و رتيبة قطعا على مجال ؛ 	الكفاءات المستهدفة
 يتم اعتماد التعريف التالي : نقول إن دالة f متصلة في النقطة x₀ إذا كان (\$\lim_{x-x_0} f(x) = f(x_0)\$) نقبل النتائج المتعلقة باتصال الدوال الحدودية والجذرية و الدوال المثلثية والدالة جذر مربع ويتم التركيز على تطبيقاتها ؟ نقبل أن صورة قطعة بدالة متصلة هي قطعة وأن صورة مجال بدالة متصلة هي مجال ثم نستنتج مبرهنة القيم الوسطية ؟ نقبل خاصيات العمليات على الدوال المتصلة و اتصال مركب دالتين . 	التوجيهات التربوية
سلسلة أنشطة - سلسلة تمارين - الكتاب المدرسي - ملخص المكتسبات السابقة ؛	الوسائل الديداكتيكية

ہ النہایات ک

ذ. عادل بناجي

الصفحة : 3 Dreamjob.ma

نهایات دوال اعتیادیة فی ٥			صية
$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$	$\lim_{x \to +\infty} \frac{1}{x^3} = 0$	$\lim_{x \to +\infty} \frac{1}{x^2} = 0$	$\lim_{x \to +\infty} \frac{1}{x} =$
$\lim_{x \to -\infty} \frac{1}{\sqrt{ x }} = 0$	$\lim_{x \to 6\infty} \frac{1}{x^3} = 0$	$\lim_{x \to 6\infty} \frac{1}{x^2} = 0$	$\lim_{x \to 6\infty} \frac{1}{x} =$

نهايات دوال اعتيادية في 0			خاصية
$\lim_{\substack{x>0\\x\to 0}}\frac{1}{\sqrt{x}}=+\infty$	$\lim_{\substack{x>0\\x\to 0}}\frac{1}{x^3}=+\infty$	$\lim_{\substack{x>0\\x\to0}}\frac{1}{x^2}=+\infty$	$\lim_{\substack{x>0\\x\to 0}}\frac{1}{x} = +\infty$
$\lim_{\substack{x<0\\x\to 0}}\frac{1}{\sqrt{ x }} = +\infty$	$\lim_{\substack{x<0\\x\to 0}}\frac{1}{x^3}=-\infty$	$\lim_{\substack{x<0\\x\to 0}}\frac{1}{x^2}=+\infty$	$\lim_{\substack{x<0\\x\to 0}}\frac{1}{x}=-\infty$

نهايات الدوال الجذرية والحدودية	خاصية
2 نهاية دالة جذرية عند ∞+ أو ∞- هي نهاية خارج	1 نهایة دالة حدودیة عند ∞+ أو ∞- هي نهایة حدها
حديها الأكبر درجة $\lim_{x \to \pm \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + + a_0}{b_m x^m + b_{m-1} x^{m-1} + + b_0} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$	$\lim_{x \to \pm \infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = \lim_{x \to \pm \infty} a_n x^n$
$\lim_{x \to \pm \infty} \frac{a_n x + a_{n-1} x + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0} = \lim_{x \to \pm \infty} \frac{a_n x}{b_m x^m}$	$x \to \pm \infty$

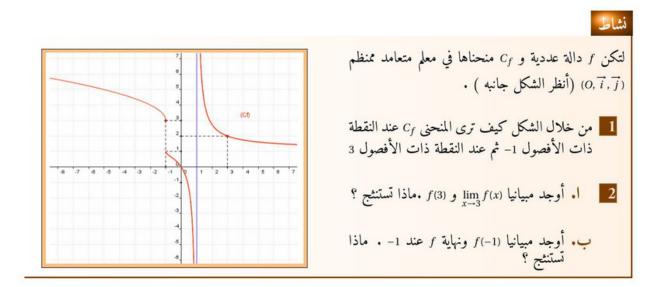
بهابات الدوال المطنية			خاصية
$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{tan(x)}{x} = 1$	$(a \neq 0); \lim_{x \to 0} \frac{\sin(ax)}{x} = a$	$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$

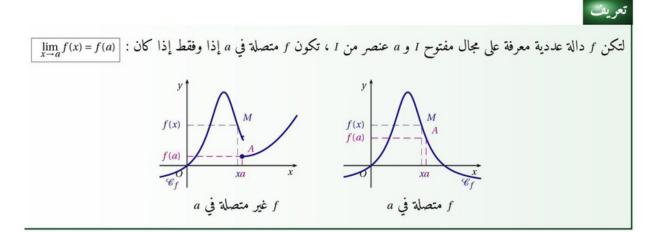
النهايات و الترتيب		خاصية
$\begin{cases} f(x) \le g(x) \\ \lim_{x \to a} g(x) = l' \end{cases}$	$\Rightarrow \lim_{x \to a} f(x) = l$	$\begin{cases} g(x) \le f(x) \le h(x) \\ \lim_{x \to a} g(x) = \lim_{x \to a} h(x) = l \end{cases} \Rightarrow \lim_{x \to a} f(x) = l$
$\begin{cases} 0 < f(x) \le u(x) \\ \lim_{x \to a} u(x) = 0 \end{cases}$	$\Rightarrow \lim_{x \to a} f(x) = 0$	$\begin{cases} f(x) - l \le u(x) \\ \lim_{x \to a} u(x) = l \end{cases} \Rightarrow \lim_{x \to a} f(x) = l \end{cases}$
$\begin{cases} u(x) \leq f(x) \\ \lim_{x \to a} u(x) = +\infty \end{cases}$	$\Rightarrow \lim_{x \to a} f(x) = +\infty$	$\begin{cases} f(x) \le u(x) \\ \lim_{x \to a} u(x) = -\infty \end{cases} \lim_{x \to a} f(x) = -\infty \end{cases}$

	4 : تصفحة
Dr	eamjob

- الاتصال في نقطة الاتصال على مجال
 - 1.1 الاتصال في نقطة

نشاط نشاط $\begin{cases} f(x) = \frac{x^2 - 4}{x - 2} ; x \neq 2; \qquad x \neq 2; \qquad f(x) = 4 \end{cases}$ is the formula of the





$$\begin{cases} f(x) = \frac{2x^2 - 2}{x - 1} & ; x \neq 1 \\ f(2) = 4 & ; x \neq 1 \end{cases} : x \neq 1 \\ \vdots \\ f(2) = 4 & ; x \neq 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{2x^2 - 2}{x - 1} \\ = \lim_{x \to 1} \frac{2(x^2 - 1)}{x - 1} \\ = \lim_{x \to 1} \frac{2(x - 1)(x + 1)}{x - 1} \\ = \lim_{x \to 1} 2(x - 1) \\ = 4 = f(2) \\ \cdot 1 & i = 1 \end{cases}$$

ملاحظة

مثال

إذا كانت f غير متصلة في a فإننا نقول إن f غير متصلة (أو منقصلة)في a .

تطبيقي تمرين
تعبير الدالة العددية f المعرفة بمايلي :
$$x \neq 2$$
 ; $x \neq 2$
 $f(x) = \frac{x^3 - 8}{x - 2}$ حدد قيمة العدد الحقيقي a لكي تكون f متصلة في 2 .
 $f(2) = a$; $a \in \mathbb{R}$

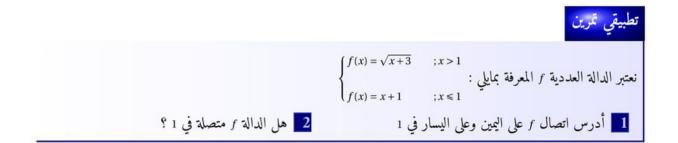
2.1 الاتصال على اليمين - الاتصال على اليسار

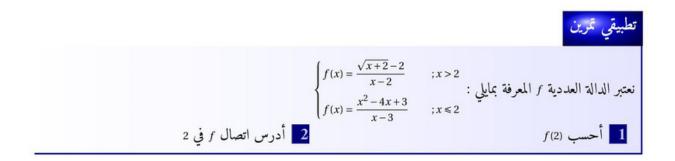
تعريف لتكن f دالة عددية معرفة على مجال من نوع [a,a+α] حيث (α>0) تكون f متصلة على اليمين في a إذا وفقط إذا كان : $\lim_{x \to a^+} f(x) = f(a)$ لتكن f دالة عددية معرفة على مجال من نوع [α, a] حيث (α>0) تكون f متصلة على اليسار في a إذا وفقط إذا كان : $\lim_{x \to a^-} f(x) = f(a)$

خاصية لتكن f دالة عددية معرفة على مجال مفتوح I و a عنصر من I ، تكون f متصلة في a إذا وفقط إذا كانت متصلة على اليمين ومتصلة على اليسار في a أي : $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a)$

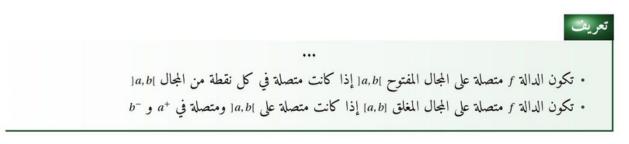
جي	بنا	J	د	b	• 3

الصفحة : 7 Dreamjob.ma





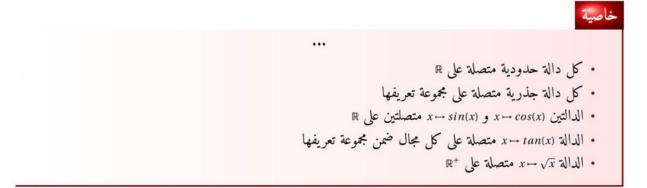
3.1 الاتصال على مجال



	ملاحظا
•••	
رف بالمثل الاتصال على المجالات [a,b] و [a,b] و [a,+∞[و [a,+∞[و	ه نع
نثيل المبياني لدالة متصلة على [a,b] هو خط متصل طرفاه النقطتان ((a,f(a) و ((b,f(b))	51 •

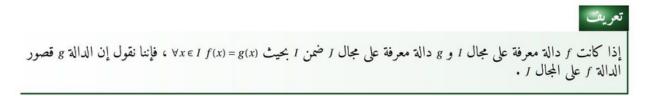
اجي	بنا	J	د	b	• 3

الصفحة : 8 Dreamjob.ma



أمثلة • الدالة f(x) = x³ - 4x² + 5x + 7 متصلة على ℝ (لأنها دالة حدودية) • الدالة f(x) = x² + 3 × - 1 (لأنها (1) - ∞ - 1 (و (1) - ∞ - 1 (و (1) - ∞ - 1 (0))

4.1 قصور دالة عددية



إذا كانت الدالة f متصلة على I و g قصور الدالة f على المجال J فإن g متصلة على I

2 العمليات على الدوال المتصلة

خاصية لتكن f و g دالتين متصلتين على مجال I و k عددا حقيقيا . الدوال f+g و g-f و f.g و (kf) و $\frac{1}{g}$ و $\frac{1}{g}$ (0≠(x ∈ I g(x)) متصلة على I .

مثال ... 1 الدالة ت√+ 2x → x متصلة على +R (لأنها مجموع الدالتين ت√→ x و 2x → x المتصلتين على +R) 2 الدالة 1/√ → x متصلة على]∞+,0[(لأنها مقلوب الدالة x√→ x المتصلة على]∞+,0[و لا تنعدم على]∞+,0] 3 الدالة 2x → x متصلة على]∞+,0[(لأنهاخارج الدالة 2+x → x المتصلة على]∞+,0[و الدالة 2x+x√→ x المتصلة على]∞+,0[و لا تنعدم على]∞+,0[)

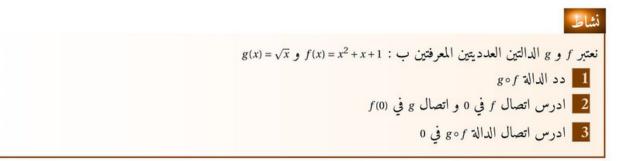
 $\begin{aligned} \text{reduction} & \text{reduction} \\ \text{$

جي	١.	1	6	
9.	-	-	-	

تمرين

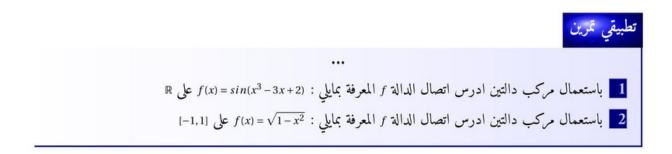
 $\begin{cases} f(x) = x + a & ; x < 1 \\ f(x) = 2x - 3 & ; 1 \le x \le 3 \end{cases}$

Let f(x) = bx + 1 be a substrained by f(x) = bx + 1 be a substraine



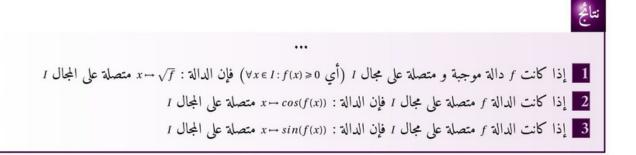
خاصية لتكن f دالة متصلة على I و g دالة متصلة على I و I ⊃ (f(I) الدالة : g ∘ f متصلة على I .

مثال لندرس اتصال الدالة f المعرفة ب : $(\frac{3}{x}) = sin(\frac{3}{x})$ لدينا * $D_f = \mathbb{R}^+$ • لدينا * f(x) = h(g(x))نضع : f(x) = h(g(x)) بحيث $\frac{3}{x}$ و $g(x) = \frac{3}{x}$ لدينا g دالة جذرية إذن فهي متصلة على مجموعة تعريفها * R ؛ و h دالة متصلة على R وبالخصوص على * R وبالتالي فإن f متصلة على * R (لأنها مركب دالتين متصلتين على *R)



الصفحة : 11

Dreamjob.ma



تطبيقي تمرين
ادرس اتصال الدالة f المعرفة بمايلي : $f(x) = \sqrt{\frac{3x-1}{x-1}}$ الدرس اتصال الدالة f المعرفة بمايلي : 1,+∞[
\mathbb{R} ادرس اتصال الدالة f المعرفة بمايلي : $f(x) = cos\left(\frac{x-1}{x^2+1}\right)$ على \mathbb{R}

3 صورة مجال بدالة متصلة

1.3 صورة قطعة - صورة مجال

خاصية مقبولة		خاصية
	•••	
		 صورة قطعة بدالة متصلة هي قطعة
		• صورة قطعة بدالة متصلة هي قطعة • صورة مجال بدالة متصلة هي مجال

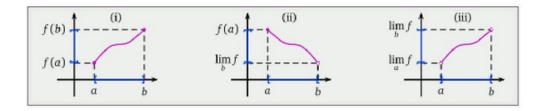
ملاحظة

إذا كانت f دالة متصلة على مجال [a,b] فإن [m,M] = ([a,b]) حيث : m هي القيمة الدنيا ل f على [a,b] ، و M هي القيمة القصوى للدالة f على [a,b]

2.3 صورة مجال بدالة متصلة ورتيبة قطعا

لتكن f دالة متصلة ورتيبة قطعا على مجال I لدينا النتائج التالية :

المجال (I)	المجال I	رتابة الدالة f
[f(a), f(b)]	[<i>a</i> , <i>b</i>]	
$f(a), \lim_{x \to b^-} f(x)$	[<i>a</i> , <i>b</i> [f تزايدية قطعا على I
$\lim_{x \to a^+} f(x), \lim_{x \to +\infty} f(x)$	$]a,+\infty[$	
$\lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x)$	R	
[f(b), f(a)]	[<i>a</i> , <i>b</i>]	
$\lim_{x \to b^-} f(x), f(a)$	[<i>a</i> , <i>b</i> [f تناقصية قطعا على I
$\lim_{x \to +\infty} f(x), \lim_{x \to a^+} f(x)$	$]a,+\infty[$	
$\lim_{x \to +\infty} f(x), \lim_{x \to -\infty} f(x)$	R	



4 مبرهنة القيم الوسطية

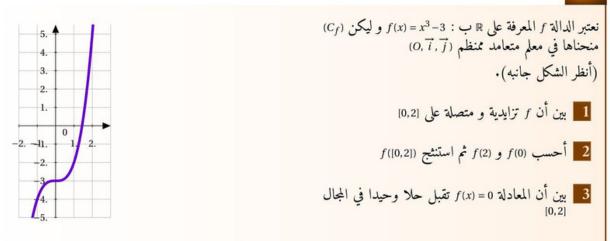
لتكن f دالة عددية متصلة على مجال [a,b] بما أن [m,M] = (m,[a,b] فإن (a) و (f(b) ينتميان إلى القطعة [m,M] و لكل عدد حقيقي k محصور بين (a) و (f(b) لدينا k є [m,M] . إذن : يوجد على الأقل عنصر c من [a,b] بحيث f(c) = k

مبرهنة القيم الوسطية	مبرهته
	لتكن f دالة متصلة على مجال I و a و b عنصرين من المجال I .
	لكل عدد حقيقي k محصور بين (a,b) و (f(b) يوجد على الأقل عنصر c من [a,b] بحيث : f(c) = k

جي	بنا	J	2	b	

	الصفحة : 13	
Dr	<mark>eam</mark> job	.ma

نشاط



ملاحظة

إذا كانت f دالة متصلة على مجال [a,b] بحيث 0> (a) و 0< (f(b) (أو 0< (a) و 0> (f(b)) فإن 0 محصور بين (a) و (f(b) و حسب مبرهنة القيم الوسطية فإنه يوجد على الأقل عنصر c من [a,b] بحيث : 0= (f(c) . العدد c هو حل المعادلة 0=(x)

نتبحة • إذا كانت f دالة متصلة على مجال [a,b] بحيث c(b) < 0 فإن المعادلة f(x) = 0 تقبل على اللأقل حل في]a,b[• إذا كانت f دالة متصلة و رتيبة قطعًا على مجال [a,b] بحيث c(b) < 0 فإن المعادلة f(x) = 0 تقبل على اللأقل حل]a,b[3

تطبيقي تمرين

لتكن f الدالة العددية المعرفة بمايلي : f(x) = x⁴ + x² + 4x - 1 بين أن المعادلة 0 = (x) تقبل على اللأقل حل فى [1,1–]

جي	بنا	J	2	b	.3
-					

الصفحة : 14 Dreamjob.ma

10 h

 $f(x) = x^3 + x^2 + 4x - 1$ لتكن f الدالة العددية المعرفة بمايلي : f(x) = x^3 + x^2 + 4x - 1 بين أن المعادلة f(x) = f(x) تقبل حلا وحيدا في $\left[-1, \frac{1}{2} \right]$

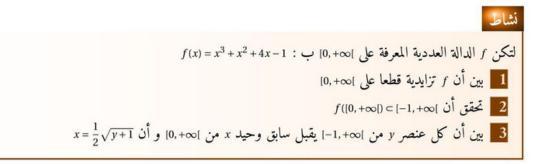
5 طريقة التفرع الثنائي

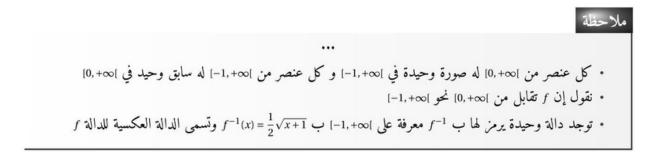
هناك بعض المعادلات من نوع f(x) = 0 لا يمكن حلها جبريا ؛ لكن يمكن تحديد قيمة مقربة لحل هذه المعادلة وذلك باستعمال طريقة التفرع الثنائي .

تطبيقي تمرين بين أن المعادلة α=1+x+1 تقبل حلا وحيدا α في المجال]1-1.-[؛ ثم حدد تأطيرا للعدد α سعته ا

6 الدالة العكسية لدالة متصلة

1.6 الدالة العكسية



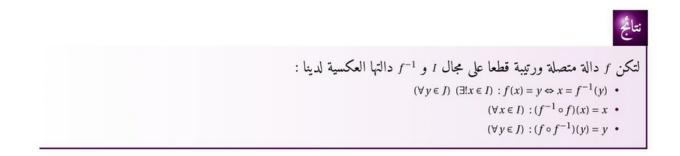


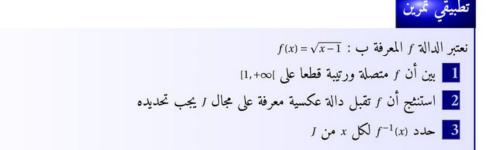
خاصية

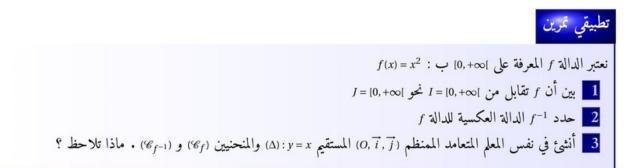
إذا كانت f دالة متصلة ورتيبة قطعا على مجال I فإن لكل عنصر y من J = f(I) المعادلة f(x) = y تقبل حلا وحيدا في I نعبر عن هذا بقولنا f تقابل من I نحو J

تعريف

لتكن f دالة متصلة ورتيبة قطعا على مجال I و J مجال حيث (J=f(I ، الدالة التي تربط كل عنصر y بالعنصر الوحيد x من I بحيث f(x) = y تسمى الدالة العكسية للدالة f نرمز لها ب f⁻¹







2.6 خاصيات الدالة العكسية

n دالة الجذر من الرتبة n

نعلم أن الدالة n(x) = xⁿ متصلة وتزايدية قطعا على]∞+.0] = I إذن تقبل دالة عكسية f⁻¹ معرفة على = J = f(I) = [0,+∞[]0,+∞[

خاصية و تعريف

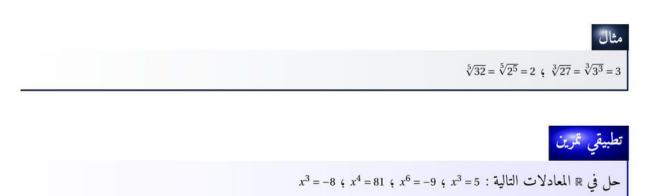
الدالة العكسية f⁻¹ تسمى دالة الجذر من الرتبة n
 الدالة العكسية f⁻¹ يرمز لها ب // = f⁻¹
 نكتب xⁿ = f⁻¹(x) = fⁿ/x = x^{1/n}

حظة
•••
$f^{-1}(x) = \sqrt[1]{x} = x : n = 1$ also .
• حالة f^{-1}(x) = \sqrt{x} = x : n = 1 • • حالة n = 2 = \sqrt{x} = x^{1/2} = \sqrt{x} = x^{1/3} : n = 2 • (1 الجذر مربع)
• حالة n = 3 = x ¹ /3 = x ¹ /3 : n = 3 (الجذر مكعب)
(; 3.);

•••

	خاصية
• في معلم متعامد ممنظم (_{f-1}) منحنى الدالة = f(x)	$\sqrt[n]{1} = 1$ $\sqrt[n]{0} = 0$ •
مع (\mathscr{C}_f) منحنى الدالة $f(x) = x^n$ بالنسبة للمنصف $\sqrt[n]{x}$	$(\sqrt[n]{x})^n = x (\forall x \ge 0) \sqrt[n]{x^n} = x \bullet$
الأول (المستقيم y = x (Δ))	$\lim_{x \to +\infty} \sqrt[n]{x}^n = +\infty \bullet$

		نتائج
	•••	
$(\forall a \in \mathbb{R}^+) \ (\forall b \in \mathbb{R}^+) : \sqrt[n]{a} \leq \sqrt[n]{b} \Leftrightarrow a \leq b \bullet$		$(\forall a \in \mathbb{R}^+) \ (\forall b \in \mathbb{R}^+) : \sqrt[n]{a} = \sqrt[n]{b} \Leftrightarrow a = b \bullet$



العمليات على الجذور من الرتبة n	خاصية
	لیکن x و y عنصرین من +ℝ و m و n عنصرین من *N لدینا :
$(y \neq 0)$: $\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$ •	$\sqrt[n]{x} \times \sqrt[n]{y} = \sqrt[n]{xy}$ •
$\sqrt[n]{\frac{m}{\sqrt{x}}} = \sqrt[nm]{x} y \sqrt[n]{x} = \sqrt[nm]{x^m} \cdot$	$(\sqrt[n]{x})^m = \sqrt[n]{x^m} \cdot$

1.7 القوة الجذرية لعدد حقيقي موجب

$$\sqrt[3]{x^2} = x^{\frac{2}{3}}$$
; $\sqrt{x^5} = x^{\frac{5}{2}}$; $\sqrt[n]{x} = x^{\frac{1}{n}}$

