- ن إعداد .د. بالباسا المهدي
 - أنواع النهايات
 الاتصال في نقطة
 - 3. الاتصال على مجال
- مبرهنة القيم الوسيطية
 الدالة العكسية
- . النهايات والاتصال
- ال. حساب النهايات و الفروع اللانهائية
 - ااا. دراسة الإشارة
 - IV. الاشتقاق
- ٧. تغيرات -تقعر-وضع نسبي
 ١٧. نقط هامة
- .VII. ملخص لقواعد nx و *e

المجزوءة :

A. دراسة الدوال العددية

- B. المتتاليات العددية
 - C. حساب التكامل
 - الأعداد العقدية

1. هناك أربع أنواع من النهايات

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \quad \# \lim_{x \to \pm \infty} f(x) = b \quad \# \lim_{x \to a} f(x) = \pm \infty \quad \# \lim_{x \to a} f(x) = b \quad \#$$

ļ

اتصال في نقطة

الفروع اللانهائية

A

3 فروع شلجمية

3 مقاربات

الاتصال في محال

الدالة العكسية مبرهنة القيم الوسيطية

2. الاتصال في نقطة :

 $l\in\mathbb{R}$: عيث $\lim_{x\to x_0}f(x)=l=f(x_0)$: نقول أن $\lim_{x\to x_0}f(x)=l=f(x_0)$ اذا تحقق ما يلي

3. الاتصال على مجال:

]a,b[المجال منصر من المجال]a,b[إذا كانت f متصلة في كل عنصر من المجال]a,b[

العمليات على الدوال المتصلة و نتائج:

لتكن f و g دالتين متصلتين على مجال g و g عدد حقيقي • الدوال g و g و g متصلة على المجال g	العمليات على الدوال المتصلة
 كل دالة حدودية متصلة على	نتائج :

لتحديد صورة مجال:

f(I) المجال		7 tltl
f تزایدیهٔ علی I	I تناقصية على f	المجال [
f([a,b]) = [f(a),f(b)]	f([a,b]) = [f(b), f(a)]	[a,b]
$f([a,b]) = \left[f(a), \lim_{x \to b^{-}} f(x)\right]$	$f([a,b[) = \left[\lim_{x \to b^{-}} f(x), f(a) \right]$	[a, b[
$f(]a,b]) = \lim_{x \to a^+} f(x), f(b)$	$f(]a,b]) = \left[f(b), \lim_{x \to a^+} f(x)\right[$]a,b]
$f(]a,b[) = \lim_{x \to a^+} f(x), \lim_{x \to b^-} f(x)[$	$f(]a,b[) = \lim_{x \to b^{-}} f(x), \lim_{x \to a^{+}} f(x)[$]a, b[
$f([a, +\infty[) = \left[f(a), \lim_{x \to +\infty} f(x)\right]$	$f([a, +\infty[) = \left[\lim_{x \to +\infty} f(x), f(a)\right]]$	[<i>a</i> , +∞[
$f(]a, +\infty[) = \lim_{x \to a^+} f(x), \lim_{x \to +\infty} f(x)[$	$f(]a, +\infty[) = \lim_{x \to +\infty} f(x), \lim_{x \to a^+} f(x)[$] <i>a</i> , +∞[
$f(]-\infty,b]) = \lim_{x \to -\infty} f(x), f(b)$	$f(]-\infty,b]) = \left[f(b), \lim_{x \to -\infty} f(x)\right]$]-∞, b]
$f(]-\infty,b[) = \lim_{x \to -\infty} f(x), \lim_{x \to b^{-}} f(x)[$	$f(]-\infty,b[) = \lim_{x \to b^{-}} f(x), \lim_{x \to -\infty} f(x)[$]-∞, b[
$f(\mathbb{R}) = \lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x)$	$f(\mathbb{R}) = \lim_{x \to +\infty} f(x), \lim_{x \to -\infty} f(x)$	R

معلومة بيناتنا: صورة مجال أتنفعنا ف مبرهنة القيم الوسيطية و الدالة العكسية أو باش تحسبها ضروري تكون الدالة رتيبة

4. مبرهنة القيم الوسيطية:

I بين أن المعادلة $f\left(x\right)=0$ تقبل حلا وحيدا lpha على مجال مفتوح m شروطها:

- Iمتصلة على المجال f
 - I رتيبة على المجال f
 - $0 \in f(I)$ o
- $f(a) \times f(b) < 0$: نتحقق من أن $\alpha \in]a,b[$ ادا طلب التحقق أن

ملاحظات:

عند الإجابة على هذا السؤال نستنتج ما يلي : `

 α مبيانيا : (C_f) يقطع محور الأفاصيل في نقطة وحيدة أفصولها

 $f(\alpha)=0$: جبریا

5. الدالة العكسية

J معرفة على المجال f^{-1} معرفة على المجال معرفة على المجال

J = f(I) معرفة على المجال f نبين أن f دالة متصلة و رتيبة قطعا على المجال I فإن f تقبل دالة عكسية f معرفة على المجال

لتحدبد صيغة الدالة العكسية<mark>:</mark>

$$\begin{cases} \forall x \in J & \forall y \in I \\ f^{-1}(x) = y \Leftrightarrow f(y) = x \end{cases}$$
نستعين بالتكافؤ التالي:

اتصال الدالة العكسية

I دالة متصلة و رتيبة قطعا على المجال f وأن الدالة عكسية f^{-1} متصلة على المجال الدالة عكسية المتصلة على ا

اشتقاق الدالة العكسية

I لتكن f دالة متصلة و رتيبة قطعاعلى المجال $f'\neq 0$ و المجال $f'\neq 0$ فلدينا ،

$$\forall x \in f(I) \quad (f^{-1})'(x_0) = \frac{1}{f'(f^{-1}(x_0))}$$

التمثيلان المبيانيان للدالتين f و f متماثلان للمنصف الأول للمعلم

