-

 قابلية اشتقاق الدالة في عدد و التأويلات الهندسية

- 2. معادلة المماس
- 3. قواعد الاشتقاق

النهایات والاتصال

اا. حساب النهايات و الفروع اللانهائية

- III. دراسة الإشارة
 - ١٧. الاشتقاق
- نغيرات -تقعر-وضع نسبي
 الا. نقط هامة
- IIV. ملخص لقواعد nx و *e

المجزوءة :

A. دراسة الدوال العددية

- B. المتتاليات العددية
 - C. حساب التكامل
 - D. الأعداد العقدية

د. قابلية اشتقاق الدالة f في عدد:

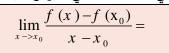
 x_0 العدد ولا أدرس قابلية اشتقاق الدالة العدد العدد

الإجابة: نحسب $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ وهناك احتمالان:

 x_0 ان وجدت النتيجة عبارة عن عدد فإن f قابلة للاشتقاق في العدد

 $x_{\,0}$ و اذا وجدت النتيجة هي: $\pm \infty$ فإن في العدد و اذا وجدت النتيجة و

نلخص ما سبق في الجدول التالي مرفوق بالتأويلات الهندسية



عدد $=f'(x_0)$

 $x_{\,0}$ قابلة للاشتقاق في العدد و f

 x_0 قابلية الاشتقاق في العدد

 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} =$

 $\int_{x \to x_0} x - x_0$

 $f'(x_0) \neq 0$

 $\overline{A}(x_0, f(x_0))$ يقبل مماس في النقطة (Cf)

 $y = f'(x_0)(x-x_0) + f(x_0)$

 $A(x_0,f(x_0))$ يقبل مماس *عمودي* في النقطة (Cf)

 ∞

 x_0 غير قابلة للاشتقاق في العدد f

یقبل مماس **اُفقی** فی النقطة (Cf)یقبل مماس $A(x_0,f(x_0))$ معادلته: $y=f(x_0)$

У

معادلة نصف مماس

التأويل الهندسي

$$\lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} = l \neq 0$$

 f_g ' (\mathbf{x}_0) علما أن l يسمى العدد المشتق اليسار نرمز له ب العدد المشتق اليسار النقطة مماس على يسار النقطة ($^{(Cf)}$) يقبل نصف مماس على يسار النقطة معادلته $y=f_g$ ' $(\mathbf{x}_0)(\mathbf{x}-\mathbf{x}_0)+f$ (x_0) : معادلته

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = l \neq 0$$

 f_d ' (\mathbf{x}_0) علما أن l يسمى العدد المشتق اليمين نرمز له ب العدد المشتق المين نرمز له ب $A(x_0,f(x_0))$ يقبل نصف مماس على يمين النقطة $y=f_d$ ' $(\mathbf{x}_0)(\mathbf{x}-\mathbf{x}_0)+f$ (x_0) : معادلته

$$\lim_{x \to x_0^{\pm}} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$$

يقبل نصف مهاس على (مين أو يسار) النقطة (Cf) موجه نحو (الأعلى أو الأسفل)

$$\lim_{x \to x_0^{\pm}} \frac{f(x) - f(x_0)}{x - x_0} = 0$$

 $A(x_0,f(x_0))$ يقبل نصف مماس على (يمين أو يسار) النقطة (Cf) معادلته $y=f(x_0)$: معادلته

المعادلة الديكارتية لمماس لمنحنى fفى عدد f

 x_0 سؤال: بين أن y=ax+b معادلة ديكارتية للمستقيم المماس لمنحنى الدالة في النقطة التي أفصولها

 $y = f'(x_0)(x - x_0) + f(x_0)$: ثم نعوض في $f'(x_0)$ ثم $f(x_0)$ ثم $f(x_0)$

 $f'(x_0)=0$ سؤال : أول هندسيا

 $A(x_0,f(x_0))$ نقول أن (C_f) يقبل مماس أفقي في النقطة نقول أن

3. قواعد الاشتقاق

	الدالة	المشتقة	قابلية الاشتقاق:
	$a / (a \in \mathbb{R})$	0	\mathbb{R}
	х	1	\mathbb{R}
	ax	а	\mathbb{R}
	χ^{n}	$n.x^{n-1}$	\mathbb{R}
	$u(x)^n$	$n(u(x)^{n-1}).(u(x)')$	\mathbb{R}

الدوال الجذريةالدوال الا جذريةالدوال المثلثية

الدالة	المشتقة	قابلية الاشتقاق:
$\frac{1}{x}$	$-\frac{1}{x^2}$	R *
$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	R*
$\frac{1}{u(x)}$	$\frac{-u(x)'}{u(x)^2}$	مجموعة تعريفها
\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0,+∞[
$\sqrt{u(x)}$	$\frac{u'(x)}{2\sqrt{u(x)}}$	مجموعة تعريفها
cos(x)	-sin(x)	\mathbb{R}
sin(x)	cos(x)	\mathbb{R}
cos(u(x))	$-u'(x) \times \sin(x)$	\mathbb{R}
sin(u(x))	$u'(x) \times \cos(x)$	\mathbb{R}

الدالة اللوغاريثمية
 الدالة الأسية

• العمليات

			11/2
	الدالة	المشتقة	قابلية الاشتقاق:
	ln(x)	$\frac{1}{x}$]0,+∞[
	ln(u(x))	$\frac{u'(x)}{u(x)}$	مجموعة تعريفها
	e^{x}	e^{x}	\mathbb{R}
	$e^{u(x)}$	$u'(x)e^{u(x)}$	\mathbb{R}
	الدالة	المشتقة	
	u(x)+v(x)	u'(x)+v'(x)	
	$u(x)^n$	$n \times \mathbf{u}(\mathbf{x})^{n-1} \times \mathbf{u}(\mathbf{x})'$	
	$u(\mathbf{x}) \times \mathbf{v}(\mathbf{x})$	$u'(x) \times v(x) + u(x) \times v'(x)$	
	<u>u(x)</u>	$u'(x) \times v(x) - u(x) \times v'(x)$	
	v(x)	v(x) ²	