

الامتحان الوطني الموحد للبكالوريا الدورة الإستدراكية **2010** الموضوع

9	المعامل:	الرياضيات الرياضيات	المــــادة:
4	مدة الإنجاز:	شعبة العلوم الرياضية (أ) و (ب)	الشعب(ة) أو المسلك:

- مدة إنجاز الموضوع هي أربع ساعات.
- يتكون الموضوع من ثلاثة تمارين و مسألة جميعها مستقلة فيما بينها .
 - يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.
 - التمرين الأول يتعلق بالبنيات الجبرية.
 - التمرين الثاني يتعلق بالأعداد العقدية.
 - التمرين الثالث يتعلق بحساب الإحتمالات.
 - المسألة تتعلق بالتحليل.

لا يسمح باستعمال الآلة الحاسبة القابلة للبرمجة

RS2

التمرين الأول: (3 نقط)

نذكر أن
$$(M_3(\mathbb{R}),+,\times)$$
 حلقة واحدية غير تبادلية.

$$E = \left\{ M\left(x\right) = \begin{pmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ x^2 & 2x & 1 \end{pmatrix} \middle/ x \in \mathbb{R} \right\} : \text{ is expanded}$$

$$(M_3(\overline{\mathbb{R}}), \times)$$
 بين أن E جزء مستقر في (1 0.5

.
$$(E, \times)$$
 نحو $(\mathbb{R}^1, +)$ نحو $M(x)$ نصوفة $M(x)$ نحو الحقيقي بالمصفوفة و (E, \times) نحو (E, \times) نحو (E, \times)

ب- استنتج أن
$$(E,\times)$$
 زمرة تبادلية.

ج- حدد
$$M(x)$$
 مقلوب المصفوفة $M^{-1}(x)$ حدد حقیقی.

$$A^5 = \underbrace{A \times A \times \times A}_{5}$$
 و $B = M(12)$ و $A = M(2)$ عيد $A^5 X = B$: المعادلة E المعادلة E المعادلة عيد E الم

.
$$(E, \times)$$
 زمرة جزئية للزمرة $F = \{M(\ln(x))/x \in \mathbb{R}_+^*\}$ زمرة جزئية للزمرة $(3, \times)$

التمرين الثاني: (4 نقط)

0.5

المستوى العقدي منسوب إلى معلم متعامد و ممنظم و مباشر $(O; \vec{u}, \vec{v})$.

$$(E)$$
 $z^2-4iz-2+2i\sqrt{3}=0$ المعادلة (1 المعادلة نعتبر في المجموعة (1

$$(E)$$
 أـ تحقق ان العدد العقدي $a=1+i(2-\sqrt{3})$ حل للمعادلة $a=0.5$

$$(E)$$
 ب- استنتج b الحل الثاني للمعادلة 0.5

$$a^2 = 4(2 - \sqrt{3})e^{i\frac{\pi}{6}}$$
 : 1.5 مین أن (2 0.5

$$c=2i+2e^{irac{\pi}{7}}$$
 و b و a والتي ألحاقها على التوالي a و b و a و a التكن a الدائرة التي أحد أقطار ها a

$$(\Gamma)$$
 أ - حدد ω لحق النقطة Ω مركز الدائرة 0.5

$$(\Gamma)$$
 ب بين أن النقطتين O و O تنتميان للدائرة O .5

ج- بين أن العدد العقدي
$$\frac{c-a}{c-b}$$
 تخيلي صرف. 0.75

التمرين الثالث: (3 نقط)

يحتوي صندوق عُلَى 10 كرات بيضاء و كرتين حمراوين .

نسحب الكرات من الصندوق الواحدة تلو الأخرى بدون إحلال إلى أن نحصل لأول مرة على كرة بيضاء ثم نوقف التجربة .

ليكن X المتغير العشوائي الذي يساوي عدد الكرات المسحوبة

0.25 أ ـ حدد مجموعة قيم المتغير العشوائي X

$$[X=1]$$
 ب- احسب احتمال الحدث $[0.5]$

$$p[X=2] = \frac{5}{33}$$
: ص- بین أن

$$[X=3]$$
 د- احسب احتمال الحدث $[0.5]$

$$(X)$$
 هو الأمل الرياضي للمتغير العشوائي $E(X)$ هو الأمل الرياضي للمتغير العشوائي $E(X)$ (حيث $E(X)$

$$(X)$$
 ب- احسب (X) ثم استنتج قيمة $V(X)$. (حيث $V(X)$ هي مغايرة المتغير العشوائي $E(X^2)$

0.75

مسألة: (10 نقط) مسألة العددية f المعرفة على المجال I = [0,1] بما يلي: -

$$\begin{cases} f(x) = \frac{1}{1 - \ln(1 - x)} & ; \quad 0 \le x < 1 \\ f(1) = 0 & \end{cases}$$

و ليكن (C) المنحنى الممثل للدالة f في معلم متعامد ممنظم و ليكن و ليكن

اين أن الدالة
$$f$$
 متصلة على اليسار في 1 f بين أن الدالة f

ادرس قابلية اشتقاق الدالة
$$f$$
 على اليسار في 1 f على اليسار أي الدالة أي الدرس

الدالة
$$f$$
 على المجال I ثم أعط جدول تغير اتها. f أدرس تغير ات الدالة أعلى المجال I

$$\frac{e-1}{e}$$
 بين أن المنحنى يقبل نقطة انعطاف وحيدة أفصولها $\frac{0.5}{e}$

$$\left(\left\|\vec{i}\right\| = \left\|\vec{j}\right\| = 2cm\right)$$
 . 0 انشئ المنحنى (C) مبرزا نصف مماسه في النقطة التي أفصولها (C)

$$f(\alpha) = \alpha$$
: من المجال I يحقق عدد حقيقي وحيد α من المجال (5) بين أنه يوجد عدد حقيقي وحيد

.
$$I$$
 نحو المجال من المجال أن الدالة f تقابل من المجال (6 $|$ 0.25

.
$$I$$
 المجال x من المجال $f^{-1}(x)$ عنصر $f^{-1}(x)$

$$I_n = \int_0^1 t^n f(t) dt$$
: و لكل عدد صحيح طبيعي غير منعدم $I_0 = \int_0^1 f(t) dt$: نضع -III

بين أن المتتالية $\left(I_{n}
ight)_{n>0}$ تتاقصية ثم استنتج أنها متقاربة. 0.75

$$(I_n)_{n\geq 0}$$
 بين أن $(\forall n\geq 0)$ $0\leq I_n\leq \frac{1}{n+1}$: نم حدد نهاية المتتالية (2 0.75

: نضع n نضع غير منعدم عدد حقيقي x من المجال J = igl[0,1igl] و لكل عدد صحيح طبيعي غير منعدم

$$S_n(x) = \sum_{k=0}^{k=n} F_k(x)$$
 o $F(x) = \int_0^x \frac{f(t)}{1-t} dt$ o $F_n(x) = \int_0^x t^n f(t) dt$ o $F_0(x) = \int_0^x f(t) dt$

$$(\forall n \in \Box) \quad (\forall x \in J) \quad F(x) - S_n(x) = \int_0^x \frac{t^{n+1} f(t)}{(1-t)} dt$$
 بين أن: (1

فحة	الصا
	4
4`	

RS24

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية ١٥٥٥ – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ)و(ب)

$$J$$
 المجال على المجال $x \to (1-x)(1-\ln(1-x))$: قطعا على المجال $(2 - 1)$

$$J$$
 با المجال x من المجال $t \to \frac{f(t)}{1-t}$. من المجال $t \to \frac{f(t)}{1-t}$

$$(\forall n \in \mathbb{N})$$
 $(\forall x \in J)$: $0 \le F(x) - S_n(x) \le \frac{1}{n+2} \left(\frac{1}{1-x}\right)$: (3)

$$\lim_{n\to +\infty} S_n(x) = F(x)$$
 : ب- استنتج أنه مهما يكن العدد x من المجال J لدينا J العدد J من العدد J 0.5

$$x \in J$$
 من أجل $F(x)$ من أجل (4 0.5

0.5

1

0.25

$$\lim_{x\to 1^-} F(x)$$
 ب- حدد النهاية: