تصحيح الامتحان الوطني للمادة العلوم الفيزيائية – الدورة العادية 2011 علوم تجريبية -مسلك العلولم الفيزيائية

الكيمياء

الجزء الأول : تتبع تحول كيميائي بقياس الضغط

1-إتمام الجدول الوصفي :

$Zn_{(s)} + 2H_3O_{(sq)}^+ \rightleftharpoons Zn_{(sq)}^{2+} + H_{2(g)} + 2H_2O_{(l)}$					المعادلة الكيميائية	
يعبر عنه بالمول mol					تقدم التفاعل	الحالة
$n_i(Zn)$	$n_i(H_3O^+)$	0	0	وافر	x = 0	البدئية
$n_i(Zn)$ - x	$n_i(H_3O^+)$ -2x	x	X	وأفر	X	خلال التحول
$n_i(Zn)$ - \mathbf{x}_{max}	$n_i(H_3O^+)$ -2 \mathbf{x}_{max}	Х _{тах}	Х _{max}	وافر	$X = X_{max}$	عند تحول كلي

 $n_i(Zn)$ و $n_i(H_3O^+)$ و -2

$$n_i(H_3O^+) = [H_3O^+]_i.V_a = 0.4 \times 75.10^{-3} \Rightarrow n_i(H_3O^+) = 3.10^{-2} \ mol$$

$$n_i(Zn) = \frac{m}{M(Zn)} = \frac{0.6}{65.4} \Rightarrow n_i(Zn) = 9.17.10^{-3} \ mol$$

3-تحديد المتفاعل المحد والتقدم الأقصى:

: ليكن $^{+}$ المتفاعل المحد

$$n_i(H_3O^+) - 2x_{max} = 0 \implies x_{max} = \frac{n_i(H_3O^+)}{2} = 15.10^{-3} \ mol$$

: متفاعل محدZn لیکن

$$n_i(Zn) - x_{max} = 0 \implies x_{max} = n_i(Zn) = 9,17.10^{-3} \text{ mol}$$

 $x_{max} = 9,17.10^{-3} \ mol$ والتقدم الأقصى هو الزنك (Zn) والتقدم

: t للتفاعل عند اللحظة x(t) للتفاعل عند اللحظة

t لدينا t لدينا ليصب الجدول الوصفي وعند اللحظة

$$n(H_2) = x$$

حسب معادلة الغازات الكاملة :

$$P.V = n.R.T$$

 $n=n_0+n(H_2)$: حيث t عند اللحظة عند العوجلة عند العوجلة عند العوب $n=n_0$ العواء في الحوجلة قبل بداية التحول بحيث n_0 : كمية مادة الهواء في الحوجلة قبل بداية التحول بحيث n_0

$$P.V = n.R.T \Rightarrow P.V = [n_0 + n(H_2)]R.T = n_0R.T + x.R.T$$

$$P.V = P_0.V + x.R.T \Rightarrow x.R.T = P.V - P_0.V = (P - P_0).V$$

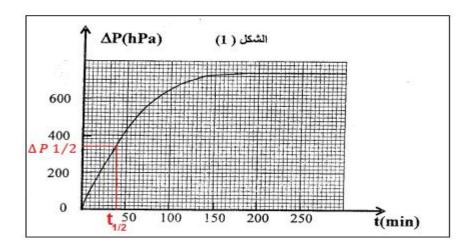
$$\chi = \frac{\Delta P}{RT} \qquad (1)$$

$$x(t)=x_{max}rac{\Delta P}{\Delta P_{max}}$$
: إثبات العلاقة -5

عند نهاية التفاعل يكون : $\Delta P_{max} = P_{max} - P_0$ و يصبح $x = x_{max}$ و يصبح العلاقة (1)

$$(2) x_{max} = \frac{\Delta P_{max}}{R.T}$$

$$\frac{(1)}{(2)} \Rightarrow \frac{x}{x_{max}} = \frac{\Delta P}{\Delta P_{max}} \Rightarrow x(t) = x_{max} \frac{\Delta P}{\Delta P_{max}}$$



 $t_{1/2}$ زمن نصف التفاعل -6 عند زمن نصف التفاعل يكون $x(t_{1/2}) = \frac{x_{max}}{2}$

باستغلال العلاقة : باستغلال العلاقة
$$rac{x(1/2)}{x_{max}} = rac{\Delta P_{1/2}}{\Delta P_{max}}$$

$$\Delta P_{1/2} = \Delta P_{max} \cdot \frac{x(t_{1/2})}{x_{max}} = \frac{\Delta P_{max}}{2}$$

حسب المنحنى جانبه نستنتج أن :

 $\Delta P \, 1/2 = 370 \, hPa$: ومنه $\Delta P_{max} = 740 \, hPa$

 $t_{1/2} \approx 42 \, min$ وباستعمال المنحنى نجد

الجزء الثاني : دراسة كمية التحليل الكهربائي

1-معادلة التفاعل بجوار الكاثود: (إلكترود النحاس) يتوضع فلز الفضة: $Ag^{+}_{(aq)} + 2e^{-} \rightleftarrows Ag_{(s)}$

معادلة التفاعل بجوار الأنود : (إلكترود الغرافيت) يتصاعد غاز الأوكسيجين :

$$H_2O_{(l)} \rightleftharpoons \frac{1}{2}O_{2(g)} + 2H^+_{(aq)} + 2e^-$$

: تعبير الكتلة m(Ag) للفضة

 $n(e^-)=rac{I.\Delta t}{F}$:ای $Q=n(e^-).F=I.\Delta t$ الدینا

حسب معادلة الاختزال نكتب:

$$n(Ag) = n(e^-)$$

$$n(Ag) = \frac{m(Ag)}{M(Ag)}$$
: لدينا

$$\frac{I.\Delta t}{F} = \frac{m(Ag)}{M(Ag)} \Rightarrow m(Ag) = \frac{I.\Delta t.M(Ag)}{F}$$

$$m(Ag) = \frac{0.5 \times 45 \times 60 \times 108}{96500} = 1.51 g$$

 $m(Ag) = 1,51 \ g$: تحديد المحلول المناسب للحصول على الكتلة المتوضعة لفلز الفضة : كتلة الفضة الناتجة في حالة الإختفاء الكلي لأيونات الفضة من خلال المعادلة نكتب :

$$m_1(Ag) = C_1.V.M(Ag) = 1,8.10^{-2} \times 0,5 \times 108 = 0,972 g$$

 $m_2(Ag) = C_2.V.M(Ag) = 3.10^{-2} \times 0,5 \times 108 = 1,62 g$

 $m_2(Ag)>1,\!51\,g$ هو S_2 لأن S_2 المحلول الذي يمكن من الحصول على الكتلة $m_2(Ag)=1,\!51\,g$

الفيزياء النووية

1-النشاط الإشعاعي للكربو 14

1.1-معادلةة التفتت:

$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{A}_{Z}X$$

A = 14 - 14 = 0 : انحفاظ العدد الإجمالي للنويات

Z = 6 - 7 = -1 : انحفاظ الشحنة الكهربائية

$$_{Z}^{A}X = _{-1}^{0}e$$

معادلة التفتت تكتب : معادلة التفتت تكتب نويدة الكربون إشعاعية النشاط $^{-6}C \rightarrow ^{14}N + ^{-0}e$

1.2-تركيب النواة المتولدة N^{14} : تتكون هذه النواة من 7 بروتونات و 7 نوترونات

1.3-الطاقة الناتحة Δ*E*

$$\Delta E = [m({}^{14}_{7}N) + m({}^{0}_{-1}e) - m({}^{14}_{6}C)].c^{2}$$

ت.ع :

 $\Delta E = (13,9992 + 0,0005 - 13,9999)u.c^2 = -0,0002 \times 931,5 Mev.c^{-2}.c^2 \Rightarrow \Delta E = -0,186 Mev.c^{-2}$

2-التأريخ بالكربون 14

 $a=a_0e^{-\lambda.t}$: وحسب قانون التناقص الإشعاعي $\lambda=rac{ln2}{t_{1/2}}$: لدينا

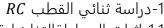
$$\frac{a}{a_0} = e^{-\lambda . t} \implies e^{\lambda . t} = \frac{a_0}{a} \implies \lambda . t = \ln\left(\frac{a_0}{a}\right) \implies t = \frac{1}{\lambda} . \ln\left(\frac{a_0}{a}\right) \implies t = \frac{t_{1/2}}{\ln 2} \ln\left(\frac{a_0}{a}\right)$$

ت.ع :

$$t = \frac{5570}{\ln 2} \times \ln\left(\frac{165}{135}\right) = 1612,5 \ ans$$

منتديات علوم الحياة و الأرض بأصيلة

الكهرباء



1.1-إثبات المعادلةالتفاضلية:

حسب قانون إضافية التوترات :

$$u_R + u_C = E$$
 $Ri + u_C = E$
 $i = \frac{dq}{dt} = \frac{d(Cu_C)}{dt} = C\frac{du_C}{dt}$: لدينا $RC\frac{du_C}{dt} + u_C = E$

 $: \tau$ و A تعسر A

$$u_C=A\left(1-e^{-rac{1}{ au}}
ight)=A-Ae^{-rac{1}{ au}}$$
 حل المعادلة التفاضلية هو $du_C=A\left(rac{-1}{ au}
ight)e^{-rac{1}{ au}}=rac{A}{ au}e^{-rac{1}{ au}}$

نعوض في المعادلة التفاضلية:

$$RC\frac{A}{\tau}e^{-\frac{1}{\tau}} + A - Ae^{-\frac{1}{\tau}} = E \implies Ae^{-\frac{1}{\tau}}\left(\frac{RC}{\tau} - 1\right) + A - E = 0$$

لتتحقق هذه المعادلة كيف ما كانت قيمة \dot{t} يجب أُن يكون : A-E=0 و $\frac{RC}{ au}-1$

$$A - E = 0$$
 g $\frac{RC}{\tau} - 1$

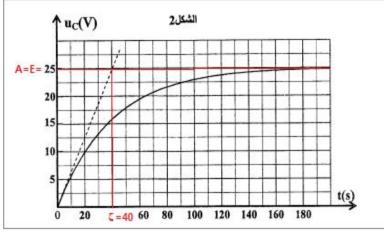
$$A = E_{9} \quad \tau = RC$$

au تحدید البعد الزمني لau:

لدىنا :

$$\begin{cases} U_R = R.i & \Rightarrow R = \frac{u_R}{i} \\ i = C\frac{du_C}{dt} \Rightarrow C = \frac{i}{\frac{du_C}{dt}} & \Rightarrow \begin{cases} [R] = \frac{[U]}{[I]} \\ [C] = \frac{[I]}{[U].[t]^{-1}} & \Rightarrow [\tau] = [R].[C] = \frac{[U]}{[I]}.\frac{[I].[t]}{[U]} \Rightarrow [\tau] = [t] \end{cases}$$

اذن ل au بعد زمنی



الشكل(1)

$$au$$
 التحديد المبياني لقيمة كل من A و -1.4 مبيانيا $A=E=25~V$ مبيانيا $au=40s$

: *R* استنتاج

$$\tau = RC \Rightarrow R = \frac{\tau}{C}$$

ت.ع :

$$R = \frac{40}{220.10^{-6}} \approx 182.10^3 \,\Omega$$

$$R \approx 182k\Omega$$

تحديد مدة اشتغال المؤقت

$$u_{\mathcal{C}}(t_S)=U_S$$
 لدينا t_S عند اللحظة $u_{\mathcal{C}}(t)=E\left(1-e^{-rac{1}{ au}}
ight)$: لدينا

$$u_C(t_S) = E\left(1 - e^{-rac{t_S}{ au}}\right) = U_S$$
 : نکتب : $\frac{U_S}{E} = 1 - e^{-rac{t_S}{ au}} \Rightarrow e^{-rac{t_S}{ au}} = 1 - rac{U_S}{E} \Rightarrow -rac{t_S}{ au} = \ln\left(1 - rac{U_S}{E}\right)$ $t_S = - au \ln\left(rac{E - U_S}{E}\right) \Rightarrow t_S = au \ln\left(rac{E}{E - U_S}\right)$

: *t*_S تحديد قيمة -2.2

 $U_S=15\ V$: لدينا

ت.ع:

$$t_S = 40 \times \ln\left(\frac{25}{25 - 15}\right) = 36,65 \, s$$

 $t_S = 36,65 \, s < \Delta t = 80 \, s$

ينطفئ المصباح قبل أن يصل ساكن العماة الى بيته .

2.3-القيمة الحدية *R*_S

 $t_{S\,min} = \Delta t$: وبالتالي وصول ساكن العمارة الى بيته قبل أن ينطفئ المصباح يجب أن يتحقق

$$R.C \ln \left(rac{E}{E - U_S}
ight) \geq \Delta t \ \Rightarrow R \geq rac{\Delta t}{C.\ln \left(rac{E}{E - U_S}
ight)}$$
 : نیکن $R_S = rac{\Delta t}{C.\ln \left(rac{E}{E - U_S}
ight)}$

$$R_S = \frac{80}{220.10^{-6} \times \ln\left(\frac{25}{25 - 15}\right)} \approx 3,97.10^5 \,\Omega$$

الميكانيك

دراسة حركة رياضي في مجال الثقالة المنتظم

A'B' داسة الحركة على الجزء-1

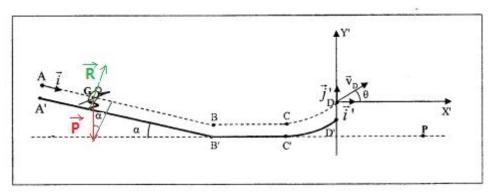
 α و g بدلالة G الجسم G عبير التسارع $\{(S)$ الجسم $\{(S)\}$

يخضع الجسم (S) الى:

وزنه : $ec{P}$

A'B' تأثير الجزء: \vec{R}

: نطبق القانون الثاني لنيوتن في المعلم (A , $ec{t}$) المرتبط بالارض والذي نعتبره غاليليا $ec{P}+ec{R}=m.\,ec{a}_G$



الاسقاط على المحور Ax:

 $mg.sin\alpha + 0 = m.a_G \Rightarrow a_G = g.sin\alpha$

مستقيمية ميان حركة G على الجزء $a_G=cst$ على الجزء $a_G=cst$ على الجزء a=cst على الجزء -1.2 متغيرة (متسارعة لأن $\vec{a}_G.\vec{V}>0$ بانتظام

: B عند السرعة v_B عند النقطة -1.3

المعادلتين الزمنيتين:

$$\begin{cases} x(t) = rac{1}{2}a_Gt^2 + v_0t + x_0 \ v(t) = a_Gt + v_0 \ a_G = g.\sin\alpha$$
 : كما أن $x_0 = 0$ و $x_0 = 0$ و $x_0 = 0$ كما أن $x_0 = 0$ باعتبار الشروط البدئية $x_0 = 0$ و $x_0 = 0$ و $x_0 = 0$ باعتبار الشروط البدئية $x_0 = 0$ و $x_0 = 0$ و $x_0 = 0$ باعتبار الشروط البدئية $x_0 = 0$ و $x_0 = 0$ و $x_0 = 0$ باعتبار الشروط البدئية $x_0 = 0$ و $x_0 = 0$ و $x_0 = 0$ باعتبار الشروط البدئية $x_0 = 0$ و $x_$

$$(v(t)=g.sinlpha.t)$$
يصل الجسم عند الحظة t_B الى النقطة حيث $B=\frac{1}{2}g.sinlpha.t^2_B \Rightarrow t_B=\sqrt{\frac{2AB}{g.sinlpha}}$

نعوض في معادلة السرعة :

$$v_B = g.\sin\alpha.\sqrt{\frac{2AB}{g.\sin\alpha}} = \sqrt{2AB.g.\sin\alpha}$$

ت.ع:

$$v_B = \sqrt{2 \times 82,7 \times 10 \times \sin(14)} = 20 \text{ m. s}^{-1}$$

B'C' دراسة المتزحلق على الجزء الأفقيB'C'

2.1-طبيعة حركة المتزحلق:

 $ec{R}$ و $ec{P}$: يخضع المتزحلق ولوازمنه على هذا الجزء لنفس القوى السابقة $\vec{R} = \vec{f} + \vec{R}_N$: في هذه الحالة الحركة تتم باحتكاك

نطبق القانون الثاني لنيوتن في المعلم ($(B\,,ec{\imath'}\,)$ المرتبط بالارض والذي نعتبره غاليليا $\vec{P} + \vec{R} = m.\,\vec{a}_C$

:Bx' الإسقاط على المحور

$$0 - f = m. \, a_G \Rightarrow a_G = -\frac{f}{m} = cst$$

. حركة Gعلى الجزء B'C' مستقيمية متغيرة بانتظام

: f أ-تعبير شدة قوة الاحتكاك

الطريقة الاولى:

: C و B نطبق مبرهنة الطاقة الحركية بين النقطتين

$$\Delta E_C = W_{B \to C}(\vec{P}) + W_{B \to C}(\vec{R})$$

$$\vec{P} \perp \overrightarrow{BC}$$
 لأن $W_{B \to C}(\vec{P}) = 0$

$$W_{B\to C}(\vec{R}) = W_{B\to C}(\overrightarrow{R_N}) + W_{B\to C}(\vec{f}) = -fBC = -fL$$

$$\frac{1}{2}m. v_C^2 - \frac{1}{2}m. v_B^2 = -fL \Rightarrow f = \frac{m}{2L}(v_B^2 - v_C^2)$$

ت.ع:

$$f = \frac{65 \times (20^2 - 12^2)}{2 \times 100} = 83.2 \, N$$

الطريقة الثانية:

المعادلتين الزمنيتين:

$$\begin{cases} x(t) = \frac{1}{2}a_Gt^2 + v_Bt + x_B \\ v(t) = a_Gt + v_B \end{cases}$$

: من الموضع c عند اللحظة من الموضع عند اللحظة

$$\begin{cases} x_C = \frac{1}{2} a_G t_C^2 + v_B t_C + x_B \\ v_C = a_G t_C + v_B \end{cases} \Rightarrow \begin{cases} x_C = \frac{1}{2} a_G \left(\frac{v_C - v_B}{a_G}\right)^2 + v_B \left(\frac{v_C - v_B}{a_G}\right) + x_B \\ t_C = \frac{v_C - v_B}{a_G} \end{cases}$$

$$x_{C} - x_{B} = \frac{v_{C} - v_{B}}{a_{G}} \left(\frac{1}{2} v_{C} - \frac{1}{2} v_{B} + v_{B} \right) \Rightarrow BC = \frac{v_{C} - v_{B}}{a_{G}} \left(\frac{v_{C} - v_{B}}{2} \right) \Rightarrow BC = \frac{v_{C}^{2} - v_{B}^{2}}{2a_{G}}$$

$$a_G = \frac{v_C^2 - v_B^2}{2BC}$$

 $f = -m.a_G$:-2.1 لدينا حسب السؤال

$$f = \frac{m(v_B^2 - v_C^2)}{2BC}$$

ت. ع :

$$f = \frac{65 \times (20^2 - 12^2)}{2 \times 100} = 83.2 \, N$$

3-دراسة الحركة في مجال الثقالة المنتظم

3.1-التعبير الحرفي للمعادلتين الزمنيتين :

المجموعة المدروسة : المتزحلق ولوازمه

 $ec{P}$ تخضع الكرة لقوة وحيدة

 $m\vec{a}_G = \vec{P}$: المرتبط بالأرض غاليليا ، نطبق القانون الثاني لنيوتن نكتب (0 , \vec{t} , \vec{j}) المرتبط بالأرض

 $ec{a}_G = ec{g}$: وبالتالي $ec{m} ec{a}_G = m ec{g}$ حسب الشروط البدئية

$$\begin{cases} v_{Dx} = v_D cos\theta \\ v_{Dy} = v_D sin\theta \end{cases} \quad \begin{cases} x_0 = 0 \\ y_0 = 0 \end{cases}$$

 $: Oy \, \circ \, Ox$ و الاسقاط على

$$\vec{a}_{G} \begin{vmatrix} a_{x} = 0 \\ a_{y} = -g \end{vmatrix} \Rightarrow \begin{vmatrix} a_{x} = \frac{dv_{x}}{dt} = 0 \\ a_{y} = \frac{dv_{y}}{dt} = \frac{dv_{y}}{dt} = 0 \end{vmatrix} \begin{vmatrix} v_{x} = v_{Dx} = v_{D}cos\theta \\ v_{y} = -gt + v_{Dy} = -gt + v_{D}sin\theta \end{vmatrix}$$

$$\vec{v}_G \begin{vmatrix} V_x = \frac{dx}{dt} = v_D cos\theta \\ V_y = \frac{dy}{dt} = -gt + v_D sin\theta \end{vmatrix} \xrightarrow{\text{Tod}} \overrightarrow{OG} \begin{vmatrix} x(t) = v_D cos\theta. t + x_0 \\ y(t) = -\frac{1}{2}gt^2 + v_D sin\theta. t + y_0 \xrightarrow{\text{Tod}} \begin{cases} x(t) = v_D cos\theta. t \\ y(t) = -\frac{1}{2}gt^2 + v_D sin\theta. t \end{cases}$$

استنتاج معادلة المسار:

لنحدد معادلة المسار بإقصاء الزمن بين المعادلتين الزمنيتيين :

$$t = \frac{x}{v_0 cos\theta} \Rightarrow y = -\frac{1}{2}g\left(\frac{x}{v_0 cos\theta}\right)^2 + v_0 sin\theta \cdot \frac{x}{v_0 cos\theta} \Rightarrow y = -\frac{g}{2v_D^2 cos^2\theta}x^2 + x \cdot tan\theta$$

3.2-سرعة المتزحلق عند النقطة D

تنتمي النقطة $P(x_P,y_P)$ الى المسار تعبير معادلة المسار يصبح : تنتمي النقطة $P(x_P,y_P)$ الى المسار تعبير معادلة المسار $y_P = -\frac{g}{2v_D^2cos^2\theta}x_P^2 + x_P.tan\theta \Rightarrow \frac{g}{2v_D^2cos^2\theta}x_P^2 = x_P.tan\theta - y_P = \frac{g}{2v_D^2cos^2\theta}x_P^2$

$$v_D^2 = \frac{g.x_P^2}{2\cos^2\theta.(x_P.\tan\theta - y_P)} \Rightarrow v_D = \frac{x_P}{\cos\theta} \sqrt{\frac{g}{2(x_P.\tan\theta - y_P)}}$$

ت.ع :

$$v_D = \frac{15}{\cos(45^\circ)} \sqrt{\frac{10}{2[15 \times \tan(45^\circ) - (-5)]}} = 10.6 \text{ m. s}^{-1}$$