

Concours d'accès en 1^{ère} année des ENSA Maroc

Juillet 2013

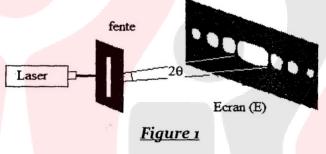
Epreuve de Physique Chimie

Durée : 1H30 min

(N.B : Toutes les opérations numériques ne nécessitent pas l'utilisation de la calculatrice.)

Exercice 1: La constante de Planck est $h = 6.10^{-34}$ J.s⁻¹ et la vitesse de la lumière dans le vide est : $c = 3.10^8 \text{ms}^{-1}$; $1 \text{ eV} = 1, 6.10^{-19}$ J

Dans le spectre de l'atome d'hydrogène, on observe une raie pour la longueur d'onde $\lambda = 648$ nm. **Q21:** Cocher la bonne réponse


 \overrightarrow{A} La fréquence correspondant à cette raie est comprise entre 400.10³ GHz et 500.10³ GHz.

B) L'énergie correspondant à cette raie est comprise entre 1,6 KeV et 2,1 KeV.

C) Cette radiation est dans le domaine de l'infrarouge.

D) Cette radiation est une radiation ionisante (son énergie est supérieure à 13,6 eV).

<u>Exercice 2</u>: On dispose d'un Laser hélium-néon. On interpose entre le Laser et un écran (E) une fente verticale de largeur $a = 3.10^{-2}$ mm (figure 1). Sur l'écran situé à la distance D = 1,5 m, on observe dans la direction perpendiculaire à la fente, une figure de diffraction représentée sur la figure 1.

Q22: Cocher la bonne réponse.

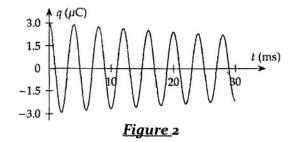
A) La largeur de la tache centrale d'est donnée par $d = \frac{2aD}{\lambda}$.

B) Quand la largeur de la fente a augmente la largeur de la tache centrale d diminue. C) La longueur d'onde Laser vaut $\lambda = 600 \, nm \, lorsque la mesure de la tache centre est <math>d = 6 \, cm$.

D)*L*'écart angulaire θ est une fon<mark>ction croissante</mark> en fonction de la la</mark>rgeur a de la fente.

Q23 : la force \vec{F} qui s'exerce sur une particule portant la charge négative q, placée dans une région où règne un champ électrostatique \vec{E} :

A) Est liée au champ \vec{E} par la relation $\vec{E} = q\vec{F}$.


B) Est liée au champ E par la relation $\vec{E} = -q\vec{F}$.

C) N'a pas le même sens lorsque la charge q change de signe.

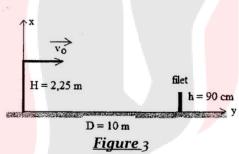
D)Ne dépend pas de la charge q.

Exercice 3: Un oscillateur électrique libre est formé d'un condensateur initialement chargé, de capacité $C = 1,0 \mu F$, d'un conducteur ohmique de résistance R et d'une bobine d'inductance L = 0,40 H et de résistance négligeable.

L'enregistrement de la tension aux bornes du condensateur a permis de tracer la courbe suivante (figure 2) où q désigne la charge de son armature positive.

Q24 : Déterminer la pseudopériode T des oscillations. A) T = 2 ms; B) T = 4 ms; C) T = 5 ms;

Q25 : Établir l'équation différentielle vérifiée par la charge q(t) à chaque instant dans le cas où R est considérée comme nulle.


A)
$$LC \frac{d^2q}{dt} + q = 0$$
; **B)** $\frac{d^2q}{dt} + \frac{L}{C}q = 0$ **C)** $LC \frac{d^2q}{dt} + q = E$; **D)** $\frac{d^2q}{dt} + \frac{1}{LC}q = E$

Q26: Avec une période $To = 2\pi\sqrt{LC}$, la solution de cette équation est: A) $q(t) = Q_m \cos(2\pi t.T_o)$; B) $q(t) = Q_m \cos(\pi t.T_o)$ C) $q(t) = Q_m \cos(2\pi t/T_o)$; D) $q(t) = Q_m \cos(\pi t.T_o)$

<u>Exercice 4</u>: Dans une bobine d'inductance L et de résistance R, le courant varie selon la loi : i(t) = a - b t, où i est exprimé en ampères (A), t est exprimé en secondes (s) et a et b sont des constantes. **Q27**: Calculer la tension aux bornes de la bobine à la date t = 0 et déterminer la date t_1 à laquelle la tension aux bornes de la bobine est nulle.

A)
$$U_B(t=o) = o \ et \ t_1 = \frac{a}{b}$$
;
B) $U_B(t=o) = Ra \ et \ t_1 = \frac{a}{b}$
C) $U_B(t=o) = Ra \ et \ t_1 = \frac{Ra + bL}{Rb}$
D) $U_B(t=o) = Ra \ et \ t_1 = \frac{Ra - bL}{Rb}$

Exercice 5: Un joueur lance une balle de tennis de diamètre 5 cm verticalement et la frappe avec sa raquette quand le centre d'inertie de la balle est situé à une hauteur H = 2,25 m du sol. Il lui communique alors une vitesse horizontale de valeur $v_o = 20$ ms⁻¹. On suppose que les frottements dues à l'air sont négligeables. Le filet de hauteur h = 90 cm est situé à la distance D= 10m du point de lancement (figure 3).

Q28 : Cocher la bonne réponse.

A) La balle atteindra le filet au bout de 0,4 s après le lancement.

B) La balle ne passera pas au dessus du filet.

C) Le centre d'inertie de la balle passera à 10 cm au-dessus du filet.

D)Le centre d'inertie de la balle passera à 15 cm au dessus du filet.

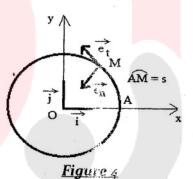
Q29 : Cocher la bonne réponse.

A) La balle touchera le sol au bout d'une durée $t_1 = 2\sqrt{\frac{H}{g}}$ à partir de la date de son lancement. B) La balle touchera le sol au bout d'une durée $t_1 = \sqrt{\frac{H}{2g}}$ à partir de la date de son lancement

D) La balle touchera le sol à la distance $D_1 = v_0 \sqrt{\frac{H}{2g}}$ du point de lancement.

Le joueur souhaite maintenant que la balle passe de h_d cm au-dessus du file en la lançant horizontalement à partir de la même position.

Q30: Cocher la bonne réponse.


A) La balle atteindra la position où se trouve le filet au bout d'un temps $t_d = \sqrt{\frac{H - (h + h_d)}{2g}}$

B) La balle atteindra la position où se trouve le filet au bout d'un temps $t_d = \sqrt{\frac{H + (h + h_d)}{2g}}$

C) La nouvelle valeur initiale de la vitesse est donnée par l'expression $v'_0 = D \sqrt{\frac{g}{2(H+h+h_d)}}$.

D) La nouvelle valeur initiale de la vitesse est donnée par l'expression $v'_0 = D \sqrt{\frac{g}{2(H-h-h_d)}}$.

Exercice 6: Dans le plan horizontal xOy d'un référentiel galiléen R(O, i, j), un mobile modélisé par un point matériel M est astreint à se déplacer sur un cercle de centre O et de rayon b (figure 4). L'équation horaire du mouvement est donnée par l'abscisse curviligne $s(t) = \widehat{AM} = b \ln(1 + \omega t)$ où ω est une constante positive et ln est le logarithme népérien. A est un point du cercle situé sur le demi axe positif Ox et $t \in [0; +\infty[$.

A l'instant initial t = 0, le mobi<mark>le Μest en Α</mark> avec la vitesse vo = bω.

La base orthonormée de Frenet est $(\vec{e_t}, \vec{e_n})$ où e_t un vecteur unitaire tangent à la trajectoire en tout point et $\vec{e_n}$ vecteur unitaire normal à $\vec{e_t}$ dirigé vers le centre O

Q31: Le vecteur vitesse du mobile M à l'instant t est $\vec{v} = v \vec{e_i}$ où v est donnée par l'expression

A)
$$v = v_0 \exp\left(-\frac{s}{b}\right)$$
; **B)** $v = \frac{2v_0 b}{b+s}$; **C)** $v = \frac{v_0 b}{b+s}$; **D)** $v = v_0 \exp\left(-\frac{s}{2b}\right)$

Le vecteur accélération \vec{a} exprimé dans la base de Frenet est donné par : $\vec{a} = a_N \vec{e_n} + a_T \vec{e_u}$

Q32: La composante normale de l'accélération à l'instant t l'expression $a_N = \frac{v^2}{b}$ est donnée par

A)
$$a_N = v_0^2 \frac{b}{(b+s)^2}$$
;
 $a_N = \frac{v_0^2}{b} \exp\left(-\frac{2s}{b}\right)$;
B) $a_N = 4v_0^2 \frac{b}{(b+s)^2}$;
C) $a_N = \frac{v_0^2}{b} \exp\left(-\frac{s}{b}\right)$;
D)

Q33: La composante tangentielle de l'accélération à l'instant t $a_T = \frac{dv}{dt} = v\frac{dv}{ds}$ est donnée par l'expression ci aprés.

A)
$$a_T = -v_0^2 \frac{b}{(b+s)^2}$$
; B) $a_T = -\frac{v_0^2}{b} \exp\left(-\frac{2s}{b}\right)$; C) $a_T = -\frac{v_0^2}{b} \exp\left(-\frac{s}{b}\right)^2$; D) $a_T = -4v_0^2 \frac{b}{(b+s)^2}$

Q34 : Cocher la bonne réponse sur la nature du mouvement. A) décéléré B) uniformément décéléré

C) accéléré D) uniformément accéléré

Q35 : Le module $F = \|\vec{F}\|$ de la résultante des forces appliquées à M, est donné par l'expression :

A)
$$F = \frac{mv^2}{b\sqrt{2}}$$
; B) $F = \frac{mv^2}{2b} \exp\left(-\frac{v}{v_0}\right)$; C) $F = \frac{mv^2\sqrt{2}}{b}$; D) $F = \frac{mv^2}{2b} \ln\left(1 + \frac{v}{v_0}\right)$

Q36: On ajoute 300 ml d'eau à 500 ml d'une solution de chlorure de sodium NaCl de concentration 4.10⁻² mole.L⁻¹. La nouvelle concentration de la solution de chlorure de sodium est égale à : **A**) 1,3.10⁻² mole.L⁻¹; **B**) 1,7.10⁻² mole.L⁻¹; **C**) 2,5.10⁻² mole.L⁻¹; **D**) 6,7.10⁻² mole.L⁻¹

Q37 : On considère la molécule suivante OH CH3-C-CH2-CH3 CH3 Le nom de cette molécule est : A) 1-éthyl, 1méthyl éthanol B) 2-méthyl butan-2-ol C) 2-hydroxy, 2-méthyl butane D)1,1-diméthyl propan-1-ol

 Q_38 : On neutralise 40 ml d'acide acétique CH_3CO_2H de concentration 3.10⁻³ mole.L⁻¹ par une solution d'hydroxyde de potassium KOH de concentration 2.10⁻² mole.L⁻¹. Le volume de KOH à l'équivalence est égal à:

A) 6 ml; B) 15 ml; C) 20 ml; D)60 ml

Q39: On chauffe un mélange contenant de l'acide méthanoïque et de l'éthanol en présence d'acide sulfurique. Le produit obtenu se nomme : A) Ethanoate d'éthyle B) Ethanoate de méthyle C) Méthanoate de méthyle D)Méthanoate d'éthyle

Q40: On réalise l'électrolyse, entre deux électrodes de carbone, d'une solution de chlorure de zinc $(Zn^{2+}, 2Cl^{-})$ pendant 1 minute avec un courant de 9,65 mA. La masse de zinc récupérée à la cathode est égale à :

A) 0,19 mg; B) 0,38 mg; C) 8,80 mg; D) 11,52 mg

<u>Données</u>: $F = 9,65.10^4$ C.mole⁻¹, Masse molaire du zinc = 64 g.mole⁻¹