

CONCOURS D'ACCES A L'ENSAM-MEKNES ET A L'ENSAM-CASABLANCA

Epreuve de Mathématiques : Filière Sciences Mathématiques A et B Vendredi 24 Juillet 2015 - Durée : 2h

Partie I : Questions à réponses précises

Chaque réponse est notée sur 2pts

	Questions	Réponses
Q1	Soit la proposition P : " $\forall a \in \mathbb{R}_+^*$; $a + \frac{1}{a} \ge 2$ ". Donner la négation et le tableau de vérité de la proposition P .	$ar{P}$: P est
Q2	Le code confidentiel d'une carte bancaire est constitué d'un nombre de 4 chiffres non nuls. Combien y-a-t-il de codes contenant une fois, et une seule, le chiffre 1?	
Q3	Soient les nombres complexes suivants : $z=e^{\frac{2\pi}{7}i}$, $a=z+z^2+z^4$ et $b=z^3+z^5+z^6$. Sachant que $a+b=-1$ et $\overline{b}=a$, donner la valeur de la somme $S=cos\left(\frac{2\pi}{7}\right)+cos\left(\frac{4\pi}{7}\right)+cos\left(\frac{8\pi}{7}\right)$.	S =
Q4	Dans le plan complexe muni d'un repère orthonormé direct $(\mathcal{O}, \vec{u}, \vec{v})$, on considère les points A, B et C d'affixes respectivement $a=2$, $b=-1+i\sqrt{3}$ et $c=-1-i\sqrt{3}$. Donner la forme trigonométrique de $z=\frac{c-a}{b-a}$, et déduire l'angle θ de la rotation qui transforme B en C .	$z = \theta = 0$
Q5	Résoudre dans \mathbb{R} l'inéquation : $3^{\cos(x)} + 3^{\cos(\pi-x)+1} \le 2\sqrt{3}$.	S =
Q6	Calculer $\lim_{x\to 0} f(x)$; où $f(x) = \frac{e^{x^2 - \cos(x)}}{2x^2}$.	$\lim_{x \to 0} f(x) =$
Q7	Soit g la fonction définie sur $[0, +\infty[$ par $g(x) = ln\left(\frac{x}{x+1}\right) - \frac{ln(x)}{x+1} + 1$ si $x > 0$ et $g(0) = a \in \mathbb{R}$. Déterminer la valeur de a pour que g soit continue sur $[0, +\infty[$.	a =
Q8	Soit $f(x) = \ln(1 + e^{-x})$. Déterminer f^{-1} .	$Df^{-1} = f^{-1}(x) =$
Q9	Déterminer la primitive F de la fonction $x \mapsto \frac{1}{x \ln(x)} \operatorname{sur}]1, +\infty[$ qui vaut 1 en e .	$f^{-1}(x) = F(x) =$
Q10	Calculer, en utilisant les sommes de Riemann, la limite de la suite $u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}$	$\lim_{n} u_n =$
Q11	Soient $f(x) = \frac{x}{1+x^2} - Arctan(x)$ et \mathcal{C}_f sa courbe représentative dans un repère orthonormé $(\mathcal{O}, \vec{\iota}, \vec{j})$ tel que : $ \vec{\iota} = \vec{j} = 1cm$. Calculer l'aire A de la surface délimitée par \mathcal{C}_f et les droites $x = 0$, $x = 1$ et $y = 0$.	A =
Q12	Soit $I_n = \int_0^1 x^n \ln(1+x) dx$, $\forall n \ge 1$. Calculer $\lim_n I_n$.	$\lim_{n} I_n =$
Q13	Sachant que $x\mapsto sin^2(x)$ est une solution de l'équation différentielle $(E):y''+4y-2=0$, déterminer la solution particulière y_0 de (E) telle que sa courbe passe par $A(0,\sqrt{2})$ et ayant une tangente en A de coefficient directeur 1 .	y ₀₌
Q14	Soit S la sphère d'équation cartésienne: $x^2 + y^2 + z^2 - 2x - 2y = 0$. Déterminer l'équation (E) du plan tangent P à S au point $O(0,0,0)$.	(E):
Q15	Sachant que $10^{3n} \equiv 1[27]$, $\forall n \in \mathbb{N}$, déterminer le reste r de la division euclidienne de $10^{100} + 100^{10}$ par 27.	r =
Q16	Résoudre dans \mathbb{Z}^2 l'équation : $x^2 - 2y^2 + xy + 2 = 0$	S =
Q17	Une usine produit des pièces dont 2% sont défectueuses. Après contrôle, on s'est aperçu que 97% des pièces bonnes sont acceptées et 99% des pièces défectueuses sont rejetées. Quelle est la probabilité <i>P</i> d'avoir une pièce bonne et rejetée ?	P =

Partie II: Questions à choix multiples

Une réponse correcte = 2pts, aucune réponse = 0pts, plus d'une réponse ou une réponse fausse = - 1pt

ro o 21	
Q18. Soit $M_3(\mathbb{R})$ l'espace des matrices carrées d'ordre 3 à coefficients réels . La matrice $A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ vér	rifie :
$A^3 \neq 2I$ A non inversible $\{I, A^3\} \text{ libre dans } M_3(\mathbb{R})$ A est inversible et A	$A^{-1} = \frac{1}{2}A^2$
Q19. Soient l'espace vectoriel réel $E = \{f: x \mapsto (ax + b)e^{2x}; a, b \in \mathbb{R}\}$ et f_1 et f_2 les deux éléments de E	définies par :
$f_1(x) = e^{2x} \text{ et } f_2(x) = xe^{2x}. \text{ Soit } B = \{f_1, f_2\} \text{ et } g: x \mapsto \int_0^x \left(t + \frac{1}{2}\right) e^{2t} dt. \text{ Alors}$	
les vecteurs $g \notin E$ B est une base de E et les B est une base	de E et les
f_1 et f_2 sont coordonnées de g dans B coordonnées d	•
liés sont $\left(0,\frac{1}{2}\right)$ sont $\left(0$,1)
Q20. On considère le disque unité $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ et la proposition $P: \exists A, B \subset \mathbb{R}; \ D = A$	$1 \times B$ ". Alors
$(1,0) \in D$ et P est vraie $(0,1) \in D$ et P est vraie P est fausse aucune	des trois
répc	nses
Q21. Soit $f: [0,1] \to \mathbb{R}$ strictement monotone telle que $f(0) = 0$ et $f(1) = 1$. L'équation : $f(x) = 1 - x^n$	$r,n\geq 1$
n'a pas de admet deux solutions admet une aucune	des trois
solution distinctes solution unique rép	onses
2	
Q22. Soit $f(x) = x - ln 2e^x - 1 $. Alors	
f bornée au f n'est pas bornée au f bornée au aucune	des trois
voisinage de $-\infty$ voisinage de $+\infty$ voisinage de $+\infty$ répo	nses
Q23. Soit $f(x) = \frac{e^x - 1}{x} + \ln(x)$. La courbe représentative C_f de f	
admet en +∞ une admet une asymptote est au-dessus de la	aucune
branche parabolique de $ $ oblique en $+\infty$ $ $ droite $y=0$	des trois
direction asymptotique la droite $y = 0$	réponses
Q24. L'équation $cos^4(x) + sin^4(x) = 1$ admet dans $[-\pi, \pi]$	
une infinité de solutions 8 solutions 4 solutions aucune so	lution
Q25. Soient a et b deux entiers naturels non nuls. Alors le nombre $N=a^4+4b^4$ vérifie :	

N est premier

N n'est pas premier

 $N < (a+b)^2 + b^2$

 $N < (a-b)^2 + b^2$