دالة اللوغاريتم

الثانية سلك بكالوربا علوم تحربيية

I- دالة اللوغاريتم النيبيري

1- تذكير - نعلم أن كل دالة متصلة على مجال I تقبل دوال أصلية على I

$$x o rac{x^{r+1}}{r+1} + k$$
 هي $]0;+\infty[$ هي $x o x^r$ تقبل دوال أصلية على $]0;+\infty[$ هي $x o x^r$ عدد حقيقي ثابت حيث $x o x^r$

المتصلة على $]0;+\infty[$ ومنه تقبل دوال أصلية $x o rac{1}{x}$ المتصلة على $]0;+\infty[$ ومنه تقبل دوال أصلية -* وبالتالي الدالة $x \to \frac{1}{x}$ تقبل دالة أصلية وحيدة تنعدم في 1.

2- تعریف

الدالة الأصلية لدالة $\frac{1}{r}$ على $0;+\infty$ [التي تنعدم في النقطة 1 تسمى دالة اللوغاريتم النيبيري ويرمز لها بالرمز In أو Log

$$\begin{cases} x > 0 \\ f'(x) = \frac{1}{x} \Leftrightarrow f(x) = \ln(x) \\ f(1) = 0 \end{cases}$$

ln(1)=0
$$]0;+∞[$$
 هي $]0;+∞[$ هي $]0;+∞[$

$$\forall x \in \left]0;+\infty\right[$$
 و $\ln'(x)=\frac{1}{x}$ و $\ln'(x)=\frac{1}{x}$ و $\ln'(x)=\frac{1}{x}$

لکل عددین حقیقیین موجبین قطعا x و y

$$\ln x = \ln y \iff x = y$$

$$\ln x > \ln y \Leftrightarrow x > y$$

ملاحظة

$$\ln x = 0 \Leftrightarrow x = 1$$

$$\ln x > 0 \Leftrightarrow x > 1$$

$$\ln x \prec 0 \Leftrightarrow 0 \prec x \prec 1$$

$$g:x \to \ln(x^2-3x)$$
 $f:x \to \ln(x-1)+\ln(4-x)$ تمرين 1- حدد مجموعة تعريف الدالتين

$$\ln(x^2-3) = \ln(2x)$$
 $\ln(x^2+2x) = 0$ المعادلتين \mathbb{R} المعادلتين -2

 $F(x) = \ln(ax)$ ب $]0;+\infty[$ ب $]0;+\infty[$ ب a دالة عددية معرفة على a عددين حقيقيين موجبين قطعا و a دالة عددية معرفة على a

$$]0;+\infty[$$
 علی $x o rac{1}{x}$ علی F و استنتج ان F دالة أصلية لدالة f علی $\forall x\in]0;+\infty[$ -1

$$\ln(ab) = \ln a + \ln b$$
 ثم استنتج $\forall x \in \left]0; +\infty\right[F(x) = \ln(ax) = \ln a + \ln x \right]$ -2

الجواب

$$u(x)=ax$$
 حيث $F(x)=\ln\circ u(x)$ حين $F(x)=\ln\circ u(x)$ حين $F(x)=\ln\circ u(x)$ $F(x)=\ln\circ u(x)$ $F(x)=\ln\circ u(x)$ $F(x)=\ln\circ u(x)$ $F(x)=\ln\circ u(x)$ $F(x)=\ln\circ u(x)$ $F(x)=a$ $f($

$\ln(ab) = \ln a + \ln b$ نحصل على x = b

<u>صية اساسية</u>

$$\forall (a;b) \in (]0;+\infty[)^2$$
 $\ln(ab) = \ln a + \ln b$

ج- خاصیات

$$\begin{aligned} \forall x \in \left] 0; +\infty \right[& \ln \frac{1}{x} = -\ln x \\ \forall \left(x; y \right) \in \left] 0; +\infty \right[^2 & \ln \frac{x}{y} = \ln x - \ln y \\ \forall \left(x_1; x_2; \dots; x_n \right) \in \left] 0; +\infty \right[^n & \ln \left(x_1 \times x_2 \times \dots \times x_n \right) = \ln x_1 + \ln x_2 + \dots + \ln x_n \\ \forall x \in \left] 0; +\infty \right[& \forall r \in \mathbb{Q}^* & \ln x^r = r \ln x \end{aligned}$$

البرهان

$$\ln\left(x \times \frac{1}{x}\right) = \ln 1 \Leftrightarrow \ln x + \ln \frac{1}{x} = 0 \Leftrightarrow \ln \frac{1}{x} = -\ln x$$

$$\ln x^r = \ln \underbrace{\left(x \times x \times \dots \times x\right)}_{r \quad facteurs} = \underbrace{\ln x + \ln x + \dots + \ln x}_{r \quad termes} = r \ln x$$
 فان $r \in \mathbb{N}^*$

$$\ln x^r = \ln x^{-n} = \ln \frac{1}{x^n} = -\ln x^n = -n \ln x = r \ln x$$
 ومنه $r = -n$ ومنه $r = -n$ فإننا نضع $r = -n$

$$y=x^{rac{p}{q}}\Leftrightarrow x^p=y^q$$
 نعلم أن $q\in\mathbb{N}^*$ $p\in\mathbb{Z}^*$ / $rac{p}{q}=r$ إذا كان

$$\ln x^{\frac{p}{q}} = \frac{p}{q} \ln x$$
 اذن $\ln y = \frac{p}{q} \ln x$ أي $\ln x = q \ln y$ و منه $\ln x^p = \ln y^q$ أي $\ln x^p = \ln y^q$

$$\ln x = r \ln x$$
 أي $\forall x \in]0;+\infty[$ $\ln \sqrt{x} = \frac{1}{2} \ln x$

نمرين هل الدالتان f و g متساويتين في الحالتين التاليتين

$$f(x) = \ln(x-1)^2$$
 $g(x) = 2\ln|x-1|$ (a
 $f(x) = \ln x (x-1)$ $g(x) = \ln x + \ln(x-1)$ (b
 $\ln \sqrt{\sqrt{2}+1} + \ln \sqrt{\sqrt{2}-1}$ تمرین (1) أحسب

$$\ln 2 \simeq 0.7$$
 $\ln 3 \simeq 1.1$ أحسب قيمة مقربة ل $\ln \frac{2}{9}$ و $\ln \sqrt{6}$ ادا علمت أن (2

Dreamjob.ma

4- دراسة دالة In

a) دالة In تزايدية قطعا على]0;+∞[

$$\lim_{x \to +\infty} \ln x = +\infty$$
 (نقبل) مبرهنة (b

$$\lim_{x \to 0^+} \ln x = -\infty$$

$$\lim_{x \to 0^+} \ln x = \lim_{t \to +\infty} \ln \frac{1}{t} = \lim_{t \to +\infty} -\ln t = -\infty$$

$$x = \frac{1}{t}$$
 نضع

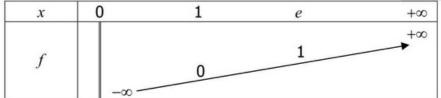
<u>البرهان</u>

c) <u>العددe</u>

لدينا الدالة In تزايدية قطعا على $]0;+\infty[$ ومتصلة و $\ln(0;+\infty[$ و منه المعادلة $\ln x=1$ تقبل حلا $\ln x=1$ ويرمز له بالحرف e ادن $\ln e=1$ ادن $\ln e=1$

 $e \simeq 2,71828$ هي عددا جذريا و قيمته المقربة هي e نقبل أن

d) <u>جدول تغيرات الدالة ln</u>



In فان محور الاراتيب مقارب للمنحنى الممثل الدالة $\lim_{x \to 0^+} \ln x = -\infty$ بما أن

e) <u>الفروع اللانهائية</u>

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

مبرهنة

اذن المنحنى الممثل لدالة ln يقبل فرعا شـلجميا في اتجاه محور الأفاصيل

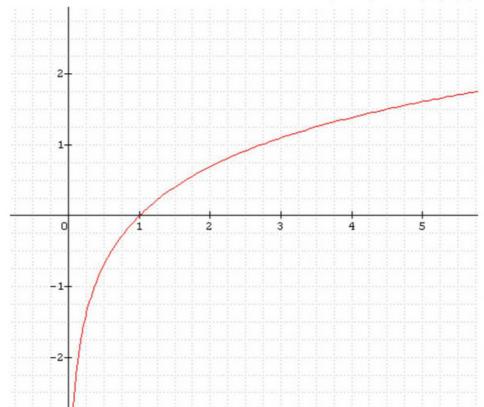
ا مقعر ln اذن منحنى الدالة
$$\forall x \in \left]0; +\infty\right[$$

$$(\ln)"(x) = -\frac{1}{x^2}$$

t) دراسة التقعر

g) التمثيل المبياني

منحنى الدالة ln



h) نهايات هامة أخرى

$$n \in \mathbb{N}^*$$
 حيث $\lim_{x \to 0^+} x^n \ln x = 0$ $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$ $\lim_{x \to 0} \frac{\ln (1+x)}{x} = 1$ $\lim_{x \to 1} \frac{\ln x}{x-1} = 1$ $\lim_{x \to 0^+} x \ln x = 0$ $\lim_{x \to 0^-} x \ln (x^2 - x)$ $\lim_{x \to +\infty} x \ln \left(\frac{x-2}{x}\right)$ $\lim_{x \to +\infty} x - \ln x$ تمرين

$$\lim_{x \to 0^-} x \ln\left(x^2 - x\right)$$
 $\lim_{x \to +\infty} x \ln\left(\frac{x - 2}{x}\right)$ $\lim_{x \to +\infty} x - \ln x$ تمرین حدد

<u>5 – مشتقة الدالة اللوغاريتم</u>

u دالة قابلة للاشتقاق على مجال I و لا تنعدم على هذا المجال I

$$\forall x \in I$$
 $\left(\ln\left|u\left(x\right)\right|\right)' = \frac{u'(x)}{u(x)}$

 $_{
m I}$ لا تنعدم على $_{
m I}$ و منه $_{
m I}$ إما موجبة قطعا على $_{
m I}$ أو سالبة قطعا على $_{
m I}$ البرهان

$$\forall x \in I$$
 $f'(x) = u'(x) \ln u(x) = \frac{u'(x)}{u(x)}$ ومنه $f(x) = \ln u(x)$ فان I موجبة قطعا على U اذا كانت U موجبة

 $f\left(x\right)=\ln(-u\left(x\right))$ اذا كانت u سالبة قطعا على I فان البة قطعا ومنه

$$\forall x \in I \qquad f'(x) = -u'(x)\ln'(-u(x)) = \frac{-u'(x)}{-u(x)} = \frac{u'(x)}{u(x)}$$

حدد مجموعة تعريف الدالة f و أحسب مشتقتها في الحالتين التاليتين $f(x) = \ln(x^2 + 2x) \quad (b$ $f(x) = \ln |x^2 - 4| \quad (a)$

______ u دالة قابلة للاشتقاق على محال I و لا تنعدم على المحال I

الدالة $\frac{u'}{}$ تسمى المشتقة اللوغاريتمية للدالة u على المجال

u دالة قابلة للاشتقاق على محال I و لا تنعدم على المحال I

الدوال الأصلية لدالة
$$c$$
 عدد c عدد الدوال الأصلية لدالة c عدد ثابت الدوال الأصلية لدالة c عدد ثابت

أوجد دالة أصلية لدالة f على المجال I في الحالات التالية

$$\begin{cases} f(x) = \frac{x-1}{x+1} \\ I =]-1; +\infty [\end{cases} \qquad \begin{cases} f(x) = \tan(x) \\ I =]\frac{-\pi}{2}; \frac{\pi}{2} [\end{cases} \qquad \begin{cases} f(x) = \frac{x-1}{x^2 - 2x} \\ I =]2; +\infty [\end{cases}$$

 $f(x) = \frac{\sqrt{x^3 + 1}}{(x + 2)^2}$ حيث $]-1;+\infty[$ حلى f على على أحسب الدالة المشتقة لدالة f

a عدد حقيقى موجب قطعا و مخالف للعدد a

 Log_a الدالة $x
ightarrow rac{\ln x}{\ln a}$ الدالة على a المعرفة على a الدالة اللوغاريتم للأساس a ونرمز لها بالرمز

$$\forall x \in]0; +\infty[$$
 $Log_a(x) = \frac{\ln x}{\ln a}$

ملاحظات

$$\forall x \in \left]0;+\infty \right[$$
 $Log_e\left(x\right)=rac{\ln x}{\ln e}=\ln x$ e دالة اللوغاريتم النيبيري هي دالة اللوغاريتم للأساس *

$$\forall a \in \mathbb{R}^{+*} - \{1\} \quad \forall r \in \mathbb{Q} \quad Log_a(a) = 1 \quad Log_a(a^r) = r \quad -*$$

 Log_a عدد حقیقي ثابت فان الدالة من $Log_a(x)=k\,\ln x$ حیث k عدد حقیقي ثابت فان الدالة الدالة من $[0;+\infty[$ تحقق جميع الخاصيات التي تحققها الدالة In

$$\forall (x; y) \in (]0; +\infty[)^{2} \quad \forall r \in \mathbb{Q} \quad Log_{a}(xy) = Log_{a}(x) + Log_{a}(y)$$

$$Log_{a}\left(\frac{x}{y}\right) = Log_{a}(x) - Log_{a}(y) \quad ; \quad Log_{a}\left(x^{r}\right) = rLog_{a}(x)$$

3- <u>دراسة دالة اللوغاريتم للأساس a</u>

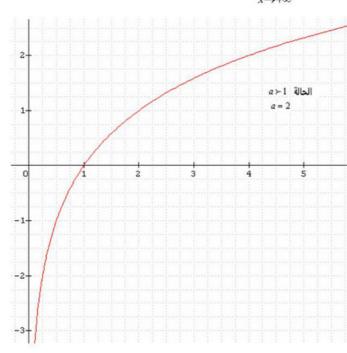
$$\forall x \in]0; +\infty[$$
 $Log_a'(x) = \frac{1}{x \ln a}$

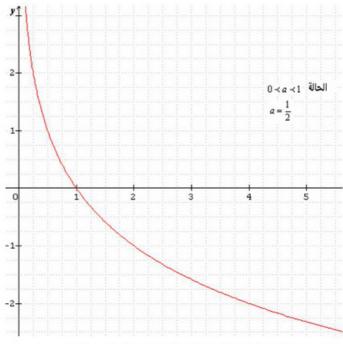
$$]0;+\infty[$$
 و منه $a\prec 0$ و منه b $a\prec 0$ اذن b $a\prec 0$ اذن b $a\prec 0$ تناقصية قطعا على b -*- اذا كان b -*

$$\lim_{x \to +\infty} Log_a x = -\infty \qquad \qquad \lim_{x \to 0^+} Log_a x = +\infty$$

$$]0;+\infty[$$
 ادن Log_a تزایدیة قطعا علی $\forall x \in]0;+\infty[$ Log $_a$ ' \succ

ا احت
$$\forall x \in \left]0;+\infty\right[$$
 \log_a ' $\succ 0$ احت $a \succ 0$ اخت $a \succ 1$ اخت $a \succ$





حالة خاصة اللوغاريتم العشري

الدالة اللوغاريتمية التي أساسـها 10 تسـمى دالة اللوغاريتم العشـري و يرمز لها بـ log

$$\forall x \in]0; +\infty[\qquad \log x = Log_{10}x = \frac{\ln x}{\ln 10}$$

ملاحظات

$$\left(M \simeq 0,434 \right)$$
 $\forall x \in \left] 0;+\infty \right[$ $\log x = M \ln x$ فاننا نحصل على $M = \frac{1}{\ln 10}$ خاذا وضعنا $M = \frac{1}{\ln 10}$

$$\forall m \in \mathbb{Z} \qquad \log 10^m = m \qquad -*$$

$$\log 0,01$$
 $\log 10000$ أحسب 1

$$\log(x-1) + \log(x+3) = 2$$

$$\begin{cases} x+y=65 \\ \log x + \log y = 3 \end{cases}$$
 \mathbb{R}^2 حل في -3