1. الخاصيات مهمين لا فالتبسيط لا فدراسة الدالة

2. حساب النهايات و الاشتقاق من أهم الأشياء الذي وجب التمرن عليها مرارا.

النهايات والاتصال ٠.

 اا. حساب النهايات و الفروع اللانهانية

> دراسة الاشارة الاشتقاق

 تغيرات -تقعر-وضع نسبي IV. نقط هامة

e* ملخص لقواعد VII و

المجزوءة:

A. دراسة الدوال العددية

B. المتتاليات العددية

C. حساب التكامل

D. الأعداد العقدية

ملخص الدالة الاسية	ملخص الدالة اللوغاريتمية
مجموعة التعريف	مجموعة التعريف
$\mathbb{R}:$ مجموعة تعريف الدالة الأسية هي $f\left(x ight)=e^{x} \Longrightarrow Df=\mathbb{R}$)] , [
$f(x) - \epsilon \rightarrow Df - \mathbb{R}$	$D_f = \left\{ x \in \mathbb{R} / \mathbf{u}(\mathbf{x}) > 0 \right\}$: هي $f(x) = \ln(\mathbf{u}(\mathbf{x}))$

$e^{0} = 1$; $e^{1} = e \approx 2,71828$ 9	$\forall x \in \mathbb{R} : e^x \succ 0$
$\forall (a,b) \in \left]0; +\infty\right[{}^{2}\;,\; \forall r \in \mathbb{Q}$	
a a	

خاصيات

•
$$e^a \times e^b = e^{a+b}$$
 • $\frac{e^a}{e^b} = e^{a-b}$

•
$$\frac{1}{e^b} = e^{-b}$$
 • $(e^a)^r = e^{ra}$

•
$$\forall x \in \mathbb{R} \ln(e^x) = x$$
 • $\forall x \in]0; +\infty[e^{\ln(x)} = x]$ • $\ln(\sqrt{a}) = \ln(a^{\frac{1}{2}}) = \frac{1}{2}\ln(a)$ • $\ln(a) = y \Leftrightarrow a = e^y / y \in \mathbb{R}$

•
$$e^a = e^b \Leftrightarrow a = b \& e^a > e^b \Leftrightarrow a > b$$

$$ln(1) = 0 ; ln(e) = 1$$

خاصيات

$$\forall (a,b) \in \left]0; +\infty\right[{}^{2}\;,\; \forall r \in \mathbb{Q}$$

•
$$\ln(\frac{a}{b}) = \ln(a) - \ln(b)$$
 • $\ln(a \times b) = \ln(a) + \ln(b)$

$$\ln(\frac{1}{b}) = \ln(a) - \ln(b)$$
• $\ln(a \times b) = \ln(a) + \ln(a)$
• $\ln(a^r) = r \cdot \ln(a)$

$$\ln(\sqrt{a}) = \ln(a^{\frac{1}{2}}) = \frac{1}{2} \ln(a^{\frac{1}{2}})$$

•
$$\ln(a) = v \Leftrightarrow a = e^y / v \in a$$

•
$$\ln(a) = \ln(b) \Leftrightarrow a = b$$
 • $\ln(a) > \ln(b) \Leftrightarrow a > b$

•
$$\ln(a) > \ln(b) \Leftrightarrow a > b$$

•
$$(x > 1 \Leftrightarrow \ln(x) > 0) & (0 < x < 1 \Leftrightarrow \ln(x) < 0)$$

نهايات اعتيادية		نهايات اعتيادية		
$x \to +\infty$	$\lim_{x \to +\infty} e^{x} = +\infty$ $\lim_{x \to +\infty} \frac{e^{x}}{x} = +\infty$ $\lim_{x \to +\infty} \frac{e^{x}}{x} = +\infty / n \in \mathbb{N}$	$x \to +\infty$	$\lim_{x \to +\infty} \ln(x) = +\infty$ $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 / n \in \mathbb{N}$	
$x \to -\infty$	$\lim_{X \to -\infty} e^{X} = 0^{+}$ $\lim_{X \to -\infty} x e^{X} = 0^{+}$ $\lim_{X \to -\infty} x^{n} e^{X} = 0$	$x \rightarrow 0^+$	$\lim_{x \to 0^+} \ln(x) = -\infty$ $\lim_{x \to 0^+} x \ln(x) = 0^-$ $\lim_{x \to 0^+} x^n \ln(x) = 0^- / n \in \mathbb{N}$	
$x \to 0$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$x \rightarrow 1$	$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$	
$x \to 1$	$\lim_{X \to 1} \frac{e^X - e}{x - 1} = e$	$x \to 0$	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$	

مشتقة الدالة الاسية	مشتقة الدالة اللوغاريتمية
$\forall x \in \mathbb{R} (e^x)' = e^x$ $(e^{u(x)})' = u'(x)e^{u(x)} : $	$\forall x \in]0; +\infty[(\ln(x))' = \frac{1}{x}$ $\forall u(x) > 0 (\ln(u(x)))' = \frac{u'(x)}{u(x)} : \text{ and } \exists x \in \mathbb{R}$
الدالة الأصلية للدالة الأسية	
$\forall x \in \mathbb{R} \int e^x dx = \left[e^x\right]$	

للاستعداد الجيد:

مجموعة من الفيديوهات على شكل LIVE على facebook مجموعة هنا في هذا الرابط

0

https://www.facebook.com/mehdi.belbacha

https://www.instagram.com/live.profmehdi/