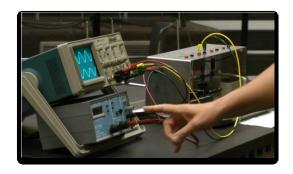
التذبذبات الكهربائية القسرية في دارة RLC على التوالي





يمكن لدارة كهربائية RLC حرة أن تتذبذب بترددها الخاص $\frac{1}{2\pi\sqrt{LC}}=\frac{1}{2\pi\sqrt{LC}}$. فماذا يحدث عندما نجبرهذه الدارة على أن تتذبذب بتردد يخالف N_0 مفروض من طرف مولد ؟ نقول في هذه الحالة أن نظام التذبذبات نظام قسري .

1) الإبراز التجريبي.

1 - 1) تذكير: الوسع و القيمة الفعالة.

القياسات الكهربائية المنجزة في هذا الدرس توظف جهاز متعدد القياسات في النمط "تناوب AC ". في هذه الحالة متعدد القياسات يقيس القيمة الفعالة للمقدار الكهربائي المعني .

القيمة الفعالة U لتوتر جيبي يعبر عنه بدلالة الوسع U_m (القيمة القصوية) لهذا التوتر بالعلاقة :

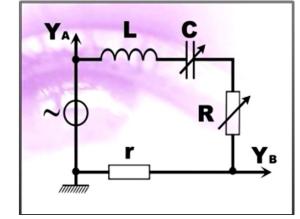
 $U = \frac{U_m}{\sqrt{2}}$

بالنسبة لشدة التيار الفعالة I فهي كذلك مرتبطة بالوسع $I_{
m m}$ لتيار متناوب جيبي بالعلاقة :

 $I = \frac{I_m}{\sqrt{2}}$

1 - 2) التركيب التجريبي .

خلال هذا الدرس ، ندرس بطرق مختلفة ، الدارة الممثلة في الشكل 1 و التي تضم :



الشكل 1

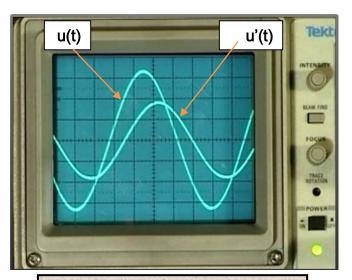
- مولد للترددات المنخفضة GBF يطبق توترا جيبيا u(t) قيمة الفعالة U و تردده N قابل للضبط.
 - مكثف سعته $C=1,0\mu$ قابل للضبط
 - وشيعة معامل تحريضها الذاتي L=70mH
 - موصل أومى مقاومته R قابلة للضبط

Page 1 الأستاذ : عزيز العطور

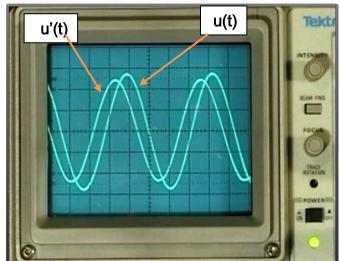
- موصل أومى مقاومته ثابتة r ، بين مربطيه نعاين توتر ا يتناسب مع شدة التيار .
 - راسم تذبذب

راسم التذبذب يمكن من معاينة:

- التوتر (u(t) المفروض من طرف المولد على مربطي ثنائي القطب « RLC » (في المدخل YA)
- $i(t) = \frac{u'(t)}{r}$. هذا التوتر يمكن من التعرف على تغيرات شدة التيار بدلالة الزمن . (Y_B في المدخل Y_B) . هذا التوتر
 - 1-3) تجربة.
- نركب بين مربطي المولد متعدد القياسات على النمط " فولطمتر في نظام التناوب "، نختار بواسطة أزرار الضبط للمولد U=2,0V مثلا GBF ، توترا U=2,0V و يردد معين U=2,0V و تردد معين U=2,0V و U=0.40 V=0.40 . U=0.40
 - ✓ نلاحظ ، على شاشة راسم التذبذب ، منحنيين جيبيين يمثلان توترين :
 - ـ لهما نفس الدور
 - ـ بصفة عامة منزاحين عن بعضهما (الشكلين 2 و 3)



الشكل $N>N_0$ شدة التيار i(t) متأخرة بالنسبة للتوتر u(t)



الشكل $N < N_0$ شدة التيار i(t) متقدمة u(t) بالنسبة للتوتر u(t)

1 - 4) استنتاج .

* نظام التذبذبات القسرية .

عندما نطبق بين مربطي ثنائي القطب « RLC » توترا جيبيا ، يكون هذا الاخير مقر تذبذبات كهربائية ترددها مفروض من طرف المولد . هذا التردد ليس بالضرورة نفس التردد الخاص لثنائي القطب . لذا نقول بأن النظام الحاصل هو نظام قسري .

* التذبذبات القسرية و التذبذبات المصانة .

في حالة التذبذبات المصانة ، جهاز يمنح باستمرار لثنائي القطب « RLC » الطاقة اللازمة التي تمكنه من تعويض ما يضيع بمفعول جول ، لكن لا يفرض عليه أي تردد للتذبذبات. تردد التذبذبات محدد بالمميزات الخاصة لثنائي القطب . اذن لا يجب الخلط بين هذين النظامين .

- 2) رنين شدة التيار .
- 2 1) الإبراز التجريبي.
 - التردد الخاص.

في حالة الدارة المدروسة ، دور التنبذبات الحرة للدارة ، أو الدور الخاص ، هو :

$$T_0 = 2\pi\sqrt{LC}$$
 \Rightarrow $T_0 = 2\pi\sqrt{70.10^{-3} \text{ x1}, 0.10^{-6}}$ \Rightarrow $T_0 = 1, 7.10^{-3} \text{ s}$

Page 2 الأستاذ : عزيز العطور

$$N_0 = \frac{1}{T_0} = 0,60 ext{kHz}$$
 : التردد الخاص هو

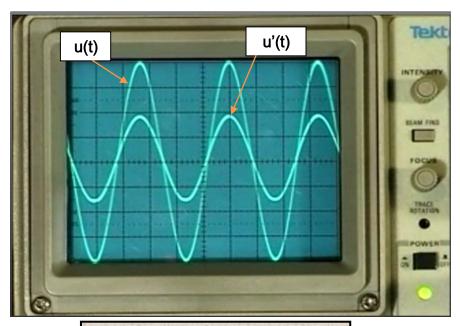
تجربة.

لنغير التردد $\stackrel{\text{u(t)}}{N}$ المفروض من طرف المولد من 20 إلى 2 المى الحفاظ على القيمة الفعالة للتوتر $\stackrel{\text{u(t)}}{U}$ ثابتة . ثم نلاحظ الوسع $\stackrel{\text{u(t)}}{U}$ للتوتر الجيبي $\stackrel{\text{u(t)}}{U}$ المعاين في المدخل $\stackrel{\text{u(t)}}{V}$ على شاشة راسم التذبذب .

$$I_m = rac{U_m^{'}}{r}$$
 : اوسع شدة التيار له العلاقة ا

• ملاحظات.

- * عنما يتزايد التردد المفروض من 20Hz إلى 0,60kHz :
 - الوسع $I_{
 m m}$ (القيمة القصوية الشدة التيار) يزداد
- ـ خلال مدة زمنية تساوي نصف الدور ، شدة التيار (i(t) تنعدم و هي تتصاعد (أو تتناقص) قبل التوتر (u(t) . نقول إنها متقدمة في الطور بالنسبة للتوتر المطبق على ثنائى القطب (الشكل 2) .
 - * عندما يتزايد التردد المفروض من 0,60kHz فإن :
 - الوسع I لشدة التيار ينقص .
 - . شدة التيار u(t) تكون متأخرة بالنسبة للتوتر u(t) (الشكل u(t)) .
 - : فإن $N = N_0 = 0,60 kHz$: N_0 فإن التردد الخاص التردد الخاص التردد الخاص
 - I_{m0} وسع شدة التيار يأخذ قيمة قصوية
 - شدة التيار (i(t) على توافق في الطور مع التوتر (u(t) (الشكل 4) .



الشكل 4: شدة التيار (i(t) و التوتر (u(t) على توافق في الطور

• استنتاج .

N يمر من قيمة قصوية عندما يكون التردد I_m يمر من قيمة قصوية عندما يكون التردد $N_0=\frac{1}{2\pi\sqrt{LC}}$ يساوي التردد الخاص π عند هذا التردد الخاص ، شدة التيار المار في الدارة على توافق في الطور مع التوتر المطبق على الدارة

هذه الظاهرة تسمى رنين شدة التيار. لهذا ، في إطار دراسة التذبذبات القسرية ، التردد الخاص No يسمى كذلك تردد الرنين .

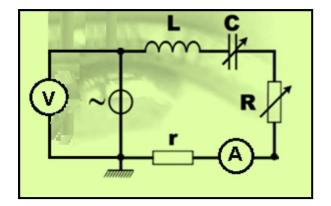
Page 3 الأستاذ : عزيز العطور

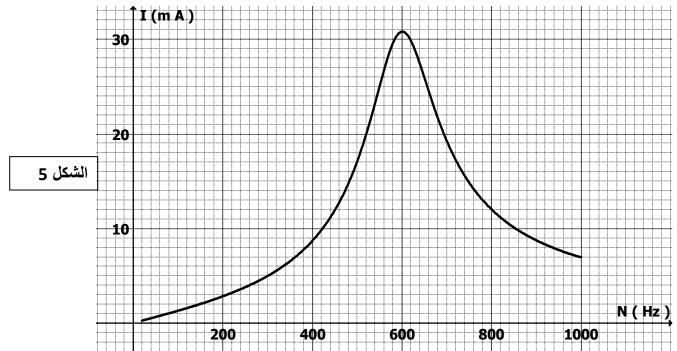
2 - 2) منحنى الرنين .

نزيل ربط راسم التذبذب من التركيب التجريبي السابق ، ثم نركب فولطمتر بين مربطي المولد و أمبير متر على التوالي مع عناصر الدارة . نثبت القيمة الفعالة لتوتر المولد على القيمة U = 2V

نثبت القيمة الفعالة لتوتر المولد على القيمة U=2V . و المقاومة $R+r=50+15=65\Omega$. نغير تردد المولد N و نقيس القيمة الفعالة I الشدة التيار الموافقة . يمثل الشكل 5 النتائج المحصل عليها .

يسمى منحنى هذا المبيان بمنحنى الرنين.





 $600 {
m Hz}$ يبين المنحنى أن هناك ترددا حيث تكون I قصوية و تأخذ القيمة $I_0 \approx 30,85 {
m mA}$ ، هذا التردد في هذه الحالة هو RLC و هو يساوي التردد الخاص لثنائي القطب « RLC » المدروس .

2 - 3) حدة الرنين .

• الرنين " الضبابي " و الرنين " الحاد " .

تحت توتر فعال W=2V ، نخط منحنا آخر للرنين ، باستعمال مقاومة مكافئة أكبر ، مثلا $R+r=110+15=125\Omega$ (الشكل $B+r=110+15=125\Omega$). نلاحظ أن تردد الرنين هو نفسه في الحالتين :

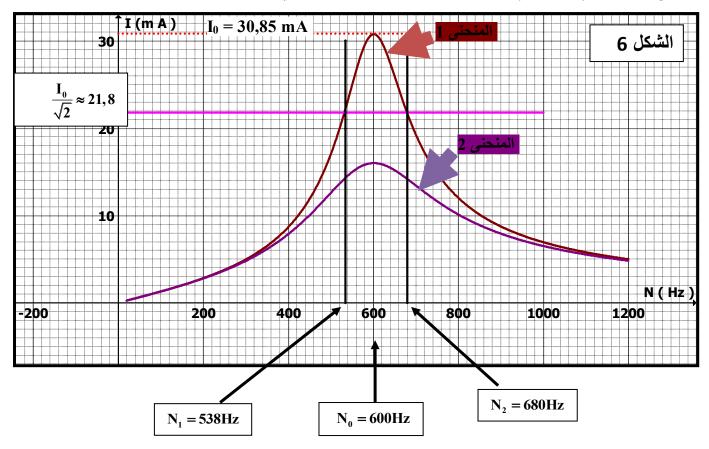
تردد الرنين لا يتعلق بمقاومة ثنائي القطب « RLC »

: \mathbf{I}_0 بينما القيمة القصوية \mathbf{I}_0' للشدة الفعالة \mathbf{I}_0' في الحالة الثانية أصغر من

شدة التيار الفعالة عند الرنين تتناقص كلما تزايدت مقاومة ثنائي القطب « RLC »

Page 4 الأستاذ : عزيز العطور

نلاحظ كذلك أن قمة المنحنى I = f(N) تكون بارزة في الحالة الأولى (المنحنى 1) : نقول أن الرنين حاد بينما في الحالة الثانية (المنحنى 2) فالقمة تقريبا منبسطة : نقول أن الرنين ضبابي



• المنطقة الممررة ذات « 3dB » .

التعريف:

المنطقة الممررة ذات « 3dB » لدارة RLC هي مجال الترددات $N_1;N_2$ للمولد (المثير) حيث تكون الشدة الفعالة I للتيار المار بثنائي القطب RLC (الرنان) أكبر أو تساوي : $\frac{I_0}{\sqrt{2}}$ مع I_0 الشدة الفعالة للتيار عند الرنين

• تحديد عرض المنطقة الممررة مبيانيا .

 $rac{ extbf{I}_0}{\sqrt{2}} = 21,8 ext{mA}$ القيمة القصوية للقيمة الفعالة $extbf{I}_0 = 30,85 ext{mA}$ و بذلك فإن

 $N_{2}=680$ و $N_{1}=538$ و $N_{1}=538$ و $N_{1}=538$ و المستقيم الأفقي $N_{1}=538$ و $N_{2}=680$ و $N_{2}=680$ و $N_{3}=680$ و $N_{2}=N_{1}=680$ عرض المنطقة الممررة هو :

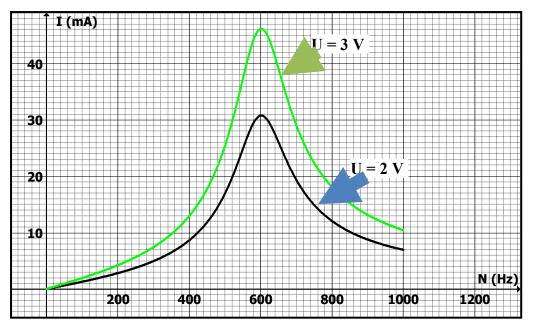
• عرض المنطقة الممررة و المقاومة الكلية للدارة .

في الحالة الأولى المقاومة الكلية تساوي $\Omega = 0.00$ و عرض المنطقة الممررة هو $\Delta N = 145$ Hz في الحالة الثانية المقاومة الكلية تساوي $\Omega = 0.00$ و عرض المنطقة الممررة هو $\Delta N' = 0.00$

عرض المنطقة الممررة يزداد مع تزايد مقاومة الدارة عندما تكون المقاومة صغيرة يكون الرنين حادا و يكون AN ضعيفا و بالتالى تكون الدارة انتقانية

Page 5 الأستاذ : عزيز العطور

• عرض المنطقة الممررة و القيمة الفعالة للتوتر المطبق . نعيد تجربة الحالة الأولى ($R+r=65\Omega$) ، فنحصل على المبيان التالي :



ننجز بنفس الطريقة السابقة تحديدا لعرض المنطقة الممررة في هذه الحالة الجديدة (U=3V) فنجد نفس العرض في الحالة الأولى (U=2V).

لا يتعلق عرض المنطقة الممررة بالقيمة الفعالة للتوتر المطبق على ثناني القطب RLC

• معامل الجودة.

معامل الجودة Q لثنائي قطب RLC هو خارج قسمة التردد عند الرنين
$$N_0$$
 على عرض منطقته الممررة $Q=\frac{N_0}{\Lambda N}$

$$Q=rac{600}{143}=4,2$$
 : $(R+r=65\Omega)$ مثلاً في الحالة الأولى $Q'=rac{N_0^{'}}{\Delta N^{'}}=rac{600}{285}=2,1$: $(R+r=110+15=125\Omega)$ و في الحالة الثانية

نلاحظ أن معامل الجودة Q يتناسب عكسيا مع عرض المنطقة الممررة و يعبر عنه بدون وحدة ، كما أن Q يصغر كلما كبرت قيمة مقاومه الدارة . حيث يميز معامل الجودة حدة الرنين

Page 6 الأستاذ : عزيز العطور

2 - 4) فوق التوتر عند الرنين .

تجربة.

. U=2,0V و $R_t=R+r=65\Omega$ نعود إلى تجربة الشكل 1 حيث

نقيس التوترات الفعالة على التوالي بين مربطي المقاومة الكلية R_t ، بين مربطي الوشيعة و بين مربطي المكثف فنجد :

 $m U_{Rt} = 2,0V$: بين مربطى المقاومة الكلية -

 $U_L = 8,4V$: بين مربطي الوشيعة -

 $U_{\rm C}=8,4V$: بين مربطي المكثف

• استنتاج .

 $\mathrm{U}
eq \mathrm{U}_\mathrm{Rt} + \mathrm{U}_\mathrm{L} + \mathrm{U}_\mathrm{C}$: من الواضح أن

القيم الفعالة للتوترات لا تحقق قانون إضافية التوترات

. التوترين الفعالين $U_{
m c}$ و $U_{
m c}$ أكبر من التوتر الفعال U الموجود بين مربطي ثنائي القطب « RLC » أيها ظاهرة فوق التوتر :

عند الرنين ، التوتر الفعال بين مربطي المكثف أو بين مربطي الوشيعة أكبر من التوتر الفعال المطبقة من طرف المولد

الملاحظة عامة : $\frac{U_{c}}{U}$ و $\frac{U_{c}}{U}$ يساوي $\frac{U_{c}}{U}$ و هي قيمة معامل الجودة في هذه الحالة . نعتبر أن هذ الملاحظة عامة :

عند الرنين ، التوتر الفعال بين مربطي المكثف يساوي جداء معامل الجودة والتوتر الفعال المطبق على ثناني القطب RLC بلاء معامل الجودة والتوتر الفعال بين مربطي الوشيعة له نفس رتبة القدر ، إذا كانت مقاومة الوشيعة مهملة .

3) ممانعة الدارة .

3 - 1) الإبراز التجريبي .

ـ ننجز التركيب التجريبي الممثل جانبه ، يسمح الأمبير متر بقياس الشدة الفعالة I للتيار الذي يمر في ثنائي القطب RLC . و يعطي الفولطمتر التوتر الفعال U للتوتر المطبق بين مربطي ثنائي القطب RLC .

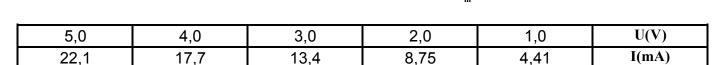
ل نضبط المولد على تردد معيِّن مثلا $N_1 = 400$ ، و بتغيير التوتر الفعال U ، نحصل عل جدول القياسات أسفله .

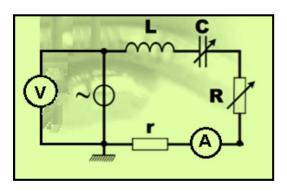
نمثل U بدلالة I فنحصل على خط مستقيم (الشكل V ، المنحنى I) يمر من أصل المعلم معادلته هي :

حيث تمثل الثابتة \mathbf{Z} المعامل الموجه للمستقيم ، و تسمى ممانعة الدارة ،

 \mathbf{Z} بالأوم $(\mathbf{\Omega})$.

* ملحوظة : يمكن تعيين الممانعة Z بطريقة سريعة ، و ذلك باستعمال راسم التذبذب ، الذي يسمح بقياس المقدارين القصويين $Z = \frac{U_m}{I}$ و U_m

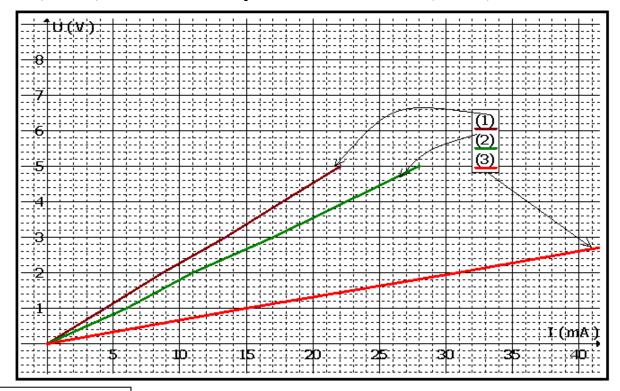




Page 7 الأستاذ : عزيز العطور

$$Z = \frac{U_m}{I_m} \qquad \qquad y \qquad Z = \frac{U}{I}$$

 $\frac{1}{2}$. $\frac{1$. (الشكل 7) ، و نضبطه عند القيمة $N_2 = 800$ فنحصل على المنحنى 2 (الشكل 7) .



الشكل 7

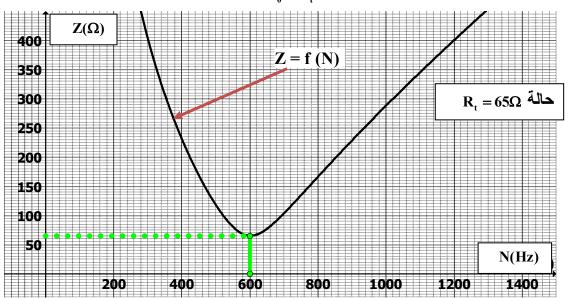
نحسب الممانعة في كل حالة فنجد:

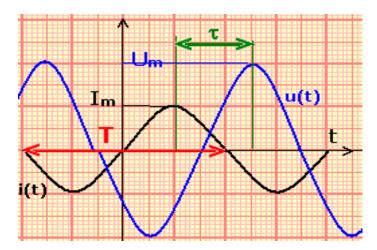
 $Z_1 = 225\Omega : N_1 \cup A$

 $\mathbf{Z}_0 = 65\Omega$: (الرنين) \mathbf{N}_0 ل - بالنسبة ل

 $\mathbf{Z}_2 = 175\Omega$: \mathbf{N}_2 النسبة ل

نلاحظ أن الممانعتين \mathbf{Z}_1 و \mathbf{Z}_2 أكبر من الممانعة Z عند الرنين بصفة عامة تأخذ الممانعة قيمتها الدنوية و التي تساوي قيمة المقاومة الكلية للدارة عند الرنين $\mathbf{Z}_0 = \mathbf{R}_t$





4) كيفية تحديد فرق الطور بين مقدارين جيبيين ؟

لنعتبر المقدارين المتناوبين الجيبين:

$$u(t) = U_m \cos(\omega t + \varphi_u) e^{i(t)} = I_m \cos(\omega t + \varphi_i)$$

$$\phi_{u/i} = \phi_u - \phi_i \, : \, i \left(t \right)$$
 نسمي طور الدالة $u \left(t \right)$ بالنسبة للدالة

$$\phi_{\scriptscriptstyle i/u} = \phi_{\scriptscriptstyle i} - \phi_{\scriptscriptstyle u}$$
 : $u(t)$ بالنسبة للدالة الدالة $i(t)$ بالنسبة الدالة

$$i(t)$$
 تقيس تقدم وتأخر طور الدالة $u(t)$ بالنسبة $\phi_{u/i}$ و نعبر عنه بالرديان .

$$i(t)$$
 نقول أن $u(t)$ متقدمة في الطور على $\phi_{u/i}>0$

$$i(t)$$
 متأخرة في الطور على $u(t)$ نقول أن $\phi_{u(t)} < 0$

$$\phi_{u/i}=-rac{\pi}{2}$$
 نقول أن $u(t)$ و $u(t)$ على تربيع في الطور . ونفس الشيء بالنسبة $\phi_{u/i}=rac{\pi}{2}$

. يقول أن
$$u(t)$$
 و $u(t)$ على تعاكس في الطور $\phi_{u/i}=\pi$

كيف نحدد قيمة م ؟

و $i(t)=I_{m}\cos\omega t$ فتصبح العلاقة $\phi=\phi_{i}$ أي أن $\phi=\phi_{i}$ أي أن $\phi=\phi_{i}$ وتصبح العلاقة

$$u\left(t\right) = U_{m}\cos\left(\omega t + \phi\right) \Longrightarrow u\left(t\right) = U_{m}\cos\left(\omega\left(t + \frac{\phi}{\omega}\right)\right) = U_{m}\cos\left(\omega\left(t + \tau\right)\right)$$

 $au=rac{\phi}{\omega}$ يوافق الطور au=0 للتوتر u(t) بالنسبة للتيار u(t) ، المدة الزمنية $\phi=\phi_u$

يسمى au الفرق الزمني بين منحنيي u(t) و u(t) . يمكّن قياس au على شاشة راسم التذبذب من تحديد القيمة المطلقة للطور au .

$$|\varphi| = \frac{2\pi}{T}.\tau$$

أمتلة:

التوتر $u_c(t)$ بين مربطي مكتف عندما يمر فيه تيار كهربائي : $i(t) = I\sqrt{2}\cos(\omega t)$ متناوب جیبی

$$u_{C}(t) = \frac{1}{C}q(t) = \frac{I_{0}\sqrt{2}}{C} \int_{0}^{t} \cos(\omega t) dt = \frac{I_{0}\sqrt{2}}{C\omega} \sin(\omega t)$$
$$u_{C}(t) = U_{C}\sqrt{2}\cos(\omega t - \frac{\pi}{2})$$

التوتر الفعال بين مربطي المكثف قيمته
$$U_{\rm C}=\frac{I_0}{C\omega}$$
 وأن $U_{\rm C}$

$$\frac{\pi}{2}$$
 ب $i(t)$ على الطور على $u_{c}(t)$

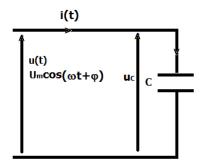
التوتر $u_{_{
m L}}(t)$ بين مربطي وشيعة خالصة (مقاومتها مهملة)

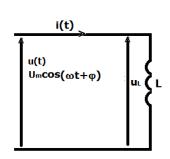
:
$$i(t) = I\sqrt{2}\cos(\omega t)$$
 عندما يمر فيها تيار كهربائي متناوب جيبي

$$u_{L}(t) = L\frac{di}{dt} = -L\omega\sin(\omega t) = L\omega\sqrt{2}\cos(\omega t + \frac{\pi}{2})$$

$$u_{L}(t) = U_{L}\sqrt{2}\cos(\omega t + \frac{\pi}{2})$$

 $rac{\pi}{2}$ التوتر الفعال بين مربطي الوشيعة قيمته $U_{
m L}={
m L}\omega{
m I}_0$ وأن $u_{
m L}(t)$ متقدمة في الطور على $U_{
m L}$





5) القدرة الكهربائية .

القدرة الكهربائية اللحظية ، المستهلكة من قبل ثنائي قطب ، يمر فيه تيار شدته i(t) ويوجد بين مربطيه التوتر u(t) هي : p(t) = u(t).i(t)

في النظام المتناوب الجيبي نبين أن : $p(t) = U.I[\cos \phi + \cos(2\omega + \phi)]$. نلاحظ أن $p(t) = U.I[\cos \phi + \cos(2\omega + \phi)]$ و التوتر) . هذه القدرة اللحظية لا تمكن من تقييم حصيلة الطاقة المكتسبة . لذا وجب تعريف القدرة المكتسبة خلال دور والتي نسميها بالقدرة المتوسطة :

في حالة النظام الجيبي القسري ، القدرة المستهلكة خلال دور هي .

$$P = \frac{1}{T} \int_0^T u(t).i(t)dt$$

$$P = U_{eff}.I_{eff} \cos \phi$$

حيث

التوتر الفعال بين مربطي ثنائي القطب $U_{
m eff}$

الشدة الفعالة للتيار المار في ثنائي القطب $I_{
m eff}$

 $\cos \phi = \frac{(R+r)}{Z}$: بسمى معامل القدرة ، حيث ϕ طور u(t) بالنسبة ل i(t) له التعبير $\cos \phi$

 $P = U_{\rm eff}.I_{\rm eff}\cos \phi = Z.I.I.\frac{R+r}{Z}$ والمتوسطة : غبير آخر للقدرة المتوسطة :

في الدارة RLC المتوالية تستهلك القدرة الكهربائية المتوسطة فقط ، بمفعول جول .

Page 10 الأستاذ : عزيز العطور